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Abstract

This paper presents an automated technique, embedded in an online service, which
ingests orbital synthetic aperture radar (SAR) imagery and outputs surface water maps
in near real time and on a global scale. The service anticipates future open data dis-
semination of water extent information using the European Space Agency’s Sentinel-1
data. The classification methods used are innovative but practical and different per
1 x 1 degree tile. For each tile, a probability distribution function of a pixel, being cov-
ered with water or being dry is established based on a long SAR training dataset. These
probability distributions are conditional on the backscatter and the incidence angle. In
classification mode the probability of water coverage is calculated, conditional on the
current backscatter — incidence angle combination. The overlap between the proba-
bility distributions of a pixel being wet or dry is used as a proxy for the quality of our
classification. The service has multiple uses, e.g. for water body dynamics in times of
drought or for urgent inundation extent determination during floods. The service gener-
ates data systematically: it is not an on-demand service activated only for emergency
response, but instead is always up-to-date and available. We demonstrate its use in
flood situations using Envisat ASAR information during the 2011 Thailand floods. A
first merge with a NASA near real time water product based on MODIS optical satellite
imagery shows excellent agreement between these independent satellite-based water
products.

1 Introduction

The consequences of inland and coastal flooding can be devastating and flooding
needs to be detected and mapped as quickly as possible, so that appropriate measures
can be taken by governments or disaster management agencies, pre-warnings may be
issued, and downstream forecasts may be initiated (Carsell et al., 2004; Werner et al.,
2005). In-situ networks of hydrological gauges are increasingly being complemented
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by satellite imagery, which plays an important role in the European Global Monitoring
of Environment and Security (GMES; Brachet, 2004) Emergency Response Core Ser-
vice. The service is meant to provide “Rapid Mapping”: fast retrieval of information from
satellite imagery in order to map consequences related to hazards and civil protection.

Fast retrieval and systematic retrieval are different terms. Thus, a number of com-
mercial and non-commercial agencies can respond to flood disasters within a short
amount of time (fast retrieval). However, these agencies react only on demand and
when an emergency response has already started. Also, due to the required manual
expertise and labour requirements, such response cannot be accomplished on a daily
basis and, commonly, not within a processing time comparable to the capture time of
satellite images (Hostache et al., 2012). “Systematic” water mapping can instead be
developed; wherein water extent information is routinely provided through the consis-
tent and automated generation of maps and associated GIS (geographic information
system) data. In surface water mapping, these maps can then be used within a GMES
Service for different purposes, such as flood status, environmental monitoring of lake
and reservoir extents or initializing hydrodynamic models. In this article we focus on
the development and use of such an automated system specifically for use in flood
response.

2 Relative advantages of SAR and optical imaging

The quality of C-band (e.g. Envisat) synthetic aperture radar (SAR) images is inde-
pendent of the time of the day and cloud cover. Water can often be visually distin-
guished due to the low backscattering exhibited by relatively flat water surfaces (with
very low return to the side-looking sensor due to specular reflection, also known as
backscatter). In contrast, and although not capable of observing through clouds, the
MODIS optical sensor on NASA’s Terra and Aqua satellites has some important ad-
vantages: the two MODIS bands provide global, twice daily coverage at 250 m spatial
resolution in two wavelengths, and optical multispectral classification methods may
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better distinguish land and water in some areas, including in deserts, where gen-
eral SAR backscatter may be very low and highly variable (a.o. Ridley et al., 1996;
Raghavswamy et al., 2008). The utility of MODIS for flood-related work has been re-
peatedly demonstrated by maps disseminated from the Dartmouth Flood Observa-
tory (http://floodobservatory.colorado.edu/). For example, these water area products
are usefully compared to numerical 2-D model output in the case of catastrophic storm
surges (Brakenridge et al., 2012). Improvements in wide-swath SAR data processing
can be undertaken to the same end, as the addition of all-weather, day-night imaging
capability provides a major benefit.

The anticipated data output from ESA’s Sentinel-1 satellites (Attema et al., 2009)
will further open opportunities. However, at present, semi-automatic classical water ex-
traction techniques, such as thresholding or change detection applied on SAR images,
may fail due to windy conditions, or partially submerged vegetation, resulting in higher
backscattering values (Yesou, 2007; Prathumchai and Samarakoon, 2005). According
to Silander et al. (2006) misclassifications may also be caused by the dependency of
backscattering on detection angle. O'Grady et al. (2011) concludes that misclassifica-
tion due to low backscatter values from non-flooded areas can be reduced via image
differencing approaches. Matgen et al. (2011) present a method relying on the calibra-
tion of a statistical distribution of “open water” backscatter values inferred from SAR
images of floods. Given the many circumstances that can affect classification results,
it is difficult to derive a consistent classification technique that, ideally, also includes an
error or accuracy assessment, and for all incidence angles. Up to the present, for ex-
ample, some manual interpretation is still normally required to translate SAR data into
water maps. However, Hostache et al. (2012) research an automated way of selecting
the best reference image for change detection.
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3 Need for automated data processing and map generation

Automation is required for any systematic mapping approach unless an army of human
operators are kept employed. Consider the case of a single ESA Sentinel-1 satellite:
(1) the expected amount of data for only Level O data across all acquisition regions
will reach 320 TB per annum, amounting to 2.3 PB (petabytes) in the course of 7.5yr
(Snoeij et al., 2009 and Attema et al., 2008), and (2) when processed further, Hornacek
et al. (2012) expects the matching Level 1 data volumes for baseline soil moisture
products to be 4 to 5 times larger than those for Level 0. In order to cope with these
amounts of data, the need for automation, and to fully utilize the very high information
content of these new sensor data streams, new techniques are needed.

4 Methodology

We now present a prototype automated technique, embedded in an online service,
which classifies SAR imagery to probability of water for each image pixel, in near real
time and at global scale. The service used Envisat ASAR data while that sensor was
operating (it failed 8 April 2012, after 10 yr), which was made available in Level-1 format
by the European Space Agency (ESA) in near real time from a 15-day rolling archive.
The data were processed in near real time (NRT), so within 3h (but usually faster)
after the data had been put on the ESA NRT Rolling Archive. Output results were
subsequently placed on an open data server in open data formats (i.e. NetCDF and
Google Earth KML files).

Previous employment of relatively high resolution (small swath) SAR for flood clas-
sification includes Kasischke et al. (1997) and McCandless and Jackson (2004). Two
attributes of SAR that are of importance for the present algorithm are: backscatter and
incidence angle.

Backscatter is the portion of the outgoing satellite radar signal — usually looking side-
ways in different incidence angles (as shown in Fig. 1) — that the target redirects back
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towards the radar receiver antenna. If the target is horizontal, the backscatter is a mea-
sure of the electromagnetic roughness of the first very thin layer of the subsurface
(a.o. Verhoest et al., 2008). As already widely known from ground penetrating radar
and other microwave techniques, the electromagnetic roughness, creating a “subsur-
face microtopography” is depending on the physical contrasts between the conductivity
and permittivity within this layer, causing a reflection coefficient: a measure of the re-
flective strength of a radar target. Usually for the solid Earth, this contrast is caused
by differences in soil moisture; differences in soil type within this thin layer play a mi-
nor role (Beres and Haeni, 1980). The normalised measure of the radar return from
a distributed target is the backscatter coefficient (00), defined per unit surface area.

If the beamed radar is to the side of the sensor, instead of vertically downward, then
an incidence angle applies, and a lesser amount of total energy returns to be recorded
by the sensor Such radar backscatter is dependent on both the incidence angle a
and on land cover, land topography, and soil moisture. Incidence angles in operating
SAR sensors commonly range between between 15° (closest to the satellite) and 45°
(furthest from the satellite), as shown in Fig. 1.

Our algorithm calculates the probability of a pixel within a satellite imaging swath
being water, by matching its backscatter signal to a probability distributions of the pixel
being dry, or being wet. These probability distributions are conditioned on geographic
location, incidence angle and polarisation of the signal and were established using
a training dataset of three years of Envisat ASAR data (Global Mode (GM), Wide Swath
Mode (WSM), Image Mode (IMM) and Alternating Polarisation Mode (APM)). The prob-
ability distribution is distributed over each 1 x 1 latitude — longitude tiled dataset of the
land covered globe. In general, for most incidence angles, the backscatter-incidence
angle (o —a) pair of land is different than that from water. In practice, an empirical distri-
bution function is estimated per geographical area by building 2-D histograms of o — a
pairs for (a) pixels within a 1 x 1 degree tile, which are permanently wet; and (b) pixels
which are permanently dry.
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An example of a trained histogram is shown in Fig. 2, where for the Netherlands
thousands of o — a WSM pairs have been gathered, smoothed and plotted for land
and water in a land 2-D histogram (bottom panel) and a water 2-D histogram (top
panel). The figure shows that backscatter characteristics for most incidence angles on
land differ from the ones over water. These ¢ — a pair 2-D histograms can be used for
classification.

5 Training method details

As noted, a training period is first used to derive a spatially distributed probabilistic
model to distinguishing land and water. Then the application of this model in near real-
time is accomplished.

First it should be noted that the parameter a as used here does not take into account
local topographic features. Next, for building the histogram training set, an ancillary
dataset is used, called the “water mask”. The water mask is derived from the NASA
SRTM Water Body map (SWBD), documented by USGS (2005) to be used for clas-
sification of water and land boundaries at the time of the Shuttle mission in February
2000. The SWBD divides the Earth in three types of classes:

— land (defined as —1);
— sea (defined as 1), which is not used in the training set;
— freshwater, consisting of large rivers and lakes (defined as 2).

During the training each combination of latitude, longitude, local incidence angle, po-
larization and backscatter in the SAR file is added to two possible training histograms,
being either a land or a freshwater histogram. These histograms in turn consist of the
following information:

— backscatter o, in 28 discrete evenly distributed values of the value in dB in be-
tween 1.55 and 4.25;
7807
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— local incidence angle a, in 29 discrete evenly distributed values in between 15.5
and 43.5 degrees;

— polarization of the SAR signal, being either 0=HH, 1=HV,2=VH, 3=VV,;

— latitude information, in discrete evenly distributed values between —54.5 and 68.5
degrees;

— longitude information, in discrete evenly distributed values between —179.5 and
179.5 degrees.

For each 1 x 1 degree tile (in latitude — longitude) a histogram is made for land for dis-
crete values of the backscatter and the local incidence angle, for each polarization. For
the freshwater dataset, one global histogram file is made. The resulting multidimen-
sional trained histograms consist of one or more hydrological years of SAR data. The
trained land and water histograms are used as the reference set for classifying newly
downloaded SAR data to land or water pixels. The training sets are built as separate
entities for each SAR mode (e.g. ASAR-GM, ASAR-WSM, ASAR-IMM, ASAR-APM). It
should be mentioned that by doing this, some ’noise’ is created, since flood events that
occur while building the training set are not filtered out.

6 Classification and quality assessment details

Because of the difference found in the o — a pair 2-D histograms (for dry land and
water), a distinction can be made between dry land and water. This is shown in a visual
example in Fig. 3.

The probability that a pixel in a SAR dataset is wet or dry is established using Bayes’
law, considering two empirical distribution functions for wet and dry pixels as posterior
distributions. The procedure to establish a single probability of a pixel being wet is given
below. All equations are written as if continuous probability distributions are used and
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are applicable on a limited area within the earth’s surface for which the set of empirical
distributions for land/water apply.
Bayes’ law in its general form can be written as

P [D|M] P[M]

P[MIP] = —55;

(1)
where P[M|D] represents the probability of a model M given demonstrative data D.
P[D|M] is the probability of data D occurring when model M applies and P[M] is the
prior distribution. In our case, we may write this as

P[bls=w]P[s=w]
Pb]

where s = w means that a pixel s is classified as water (w) and b represents a certain
o — a pair. P[b|s = w] is the probability that a certain o — a combination is experienced
when a pixel is classified as water. This probability distribution is approximated em-
pirically based on discrete slices of the trained 2-D histograms per discrete incidence
angle value as described in Sects. 4 and 5. P[s = w] represents prior knowledge that
the pixel within the SAR scene is water. Since we have no prior knowledge about this,
and a pixel can only have two states (land or water), this probability is set on 0.5. Fi-
nally, P[b] is the normalization constant. The same equation can be established for the
probability that a pixel should be classified as dry land, being:

Plbls=d|P[s=d
P[s=dlb] = Ll P[]b][ ] (3)

P[s=w|b] = (@)

where s = d means that a pixel s is classified as dry/land.
Equations (2) and (3) both share the same denominator. Furthermore, both priors
have the same value being 0.5. Therefore, the following applies:

P[s=wl|b] = cP [bls = w] (4)
7809
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and
P [s = d|b] =cP [b|s = d] . (5)

Furthermore, it is known that the sum of probabilities of a pixel being dry land or water
is equal to unity, given that dry land or water are the only two states possible. Therefore
we can write

1
T PPbls=w]+Pbls=d]
Substituting Eq. (6) in Eq. (4) gives:
B P [bls = w]

P [bls=w] +P [b]s =d]

(6)

P [s = w|b] (7)
Equation (7) is used to determine the probability that a pixel is water. Finally, know-
ing the empirical probability distributions for dry land and water, we define a quality
indicator g at a certain latitude, longitude and polarisation, as defined in Eq. (8):

q=[(/P[b|s=w]u/P[b|s=d])—1] (8)

in which the shared area of the normal distributions of the land and water probabilities
P(b|s = d) and P(b|s = w) are a measure for the quality of the probability calculation.
In other words, when the two probability distribitions overlap completely in a trained
dataset of a 1 x 1 degree tile — which could for example happen at some low and in-
termediate local incidence angles and in very dry areas like deserts — g will be close
to 0%. If the two distributions are separated completely g will be 100 %. This indica-
tor is dependent on backscatter, incidence angle and geographical location (latitude-
longitude). It can be used as a post-processing tool to filter out data that is already
pre-defined as inferior for calculating water probability by defining threshold values
(e.g. to only show probabilities where the quality indicator higher than 70 %).
7810

Jadeq uoissnosiq | Jeded uoissnosiq | Jadedq uoissnosiqg | Jeded uoissnosiq

HESSD
9, 78017834, 2012

Automated global
water mapping

R. S. Westerhoff et al.

: “““ I““


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/7801/2012/hessd-9-7801-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/7801/2012/hessd-9-7801-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

7 Creating a topography mask

With proper correction for topography, SAR classification methods can be improved in
mountainous areas (a.o. van Zyl, 1993). Resulting errors in this topography correction
will depend on the spatial resolution and quality of this topography data. Instead of cor-
recting for topography, however, and because our concern is surface water, we have
chosen to improve efficiency of the automated NRT calculation methods by using a pre-
processing filter or mask, prior to classification to water probability. By using threshold
values of the Height Above Nearest Drainage (HAND) index (Rennd et al., 2008), areas
that are unlikely for long term flooding are filtered out. The HAND index is calculated by
expressing the relative height of a location to its drainage outlet in an associated chan-
nel. It has now been calculated globally based on the HYDRO1k dataset, developed at
the US Geological Survey (2008) and based on GTOPO30, a global Digital Elevation
Model (DEM) at 30 arc second (approximately 1 km at the equator) resolution (Gesch
et al., 1999). An example of the HAND index for Thailand is shown in Fig. 4.

8 Creating a Google Earth KML viewer

To enable an end-user to view relevant results from a planetary view (many floods
affect very large land areas), as well as a detailed regional or local views, a smart visu-
alisation is required. We investigated the use of Google Earth for this purpose. Google
Earth’s KML (Keyhole Markup Language) format allows for the use of scalable visual-
isation with different detail at different zoom levels. The result of this technique is that
a user may view a low detail image of the whole globe when viewing Google Earth’s
globe from far above. As a user zooms in, more detailed sub-figures are downloaded
and displayed; these show a small portion of the complete dataset. In this way, a user
may view a large region, but only download the parts that are relevant. Tools from the
open-source OpenEarth SVN repository (de Boer et al., 2012) were used to gener-
ate such tiled KML structures. Examples of global KML outputs are presented below.
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Figure 5 shows a daily compilation, but multi-day compilations are also available. Fig-
ure 6 shows an example of a 10-daily compilation of all data.

9 Preliminary results

The downloaded SAR files are temporarily stored in (NetCDF) grid files. The trained
histograms for each 1 x 1 degree (in latitude — longitude) tile have been generated
for land for discrete values of the backscatter and the local incidence angle, for each
polarization. Figure 7 shows a global compilation for ASAR Global Mode (GM) data
and three examples of discrete histogram training sets, being rainforest, desert, and
freshwater.

Different areas in the world show different backscatter characteristics. For example,
desert (as well as savannah and mountainous regions) have a low backscatter, rainfor-
est generally has a rather constant backscatter value, whereas ice (not shown in the
figure) exhibits a very high backscatter. This regional dependency is the reason that
the probability distributions of land are stored per latitude—longitude tile.

Water probabilities and quality indicators are calculated and stored together in (daily)
folders containing all calculated water probabilities, and designed to be made publicly
available. The water probabilities are made available in gridded (NetCDF) files of 10x10
degrees tiles. An example of an output in a resolution of 0.009 x 0.009 lat-lon degrees
is shown in Fig. 8, where areas are shown where the water probability is set to 0 and
the quality indicator to 100, independent if there is satellite data available. This is the
result of the incorporation of the HAND filter, automatically setting water probabilities
as a pre-processing step before classification.

10 Validation of the method in a case study, Thailand, 2011

We provide here the results of the algorithms as tested in an area in and north of
Bangkok, Thailand. The region along the Chao Phraya River suffered from severe
7812
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flooding in the fall of 2011, caused by heavy rains. The area is rather flat, but sur-
rounded by hills. During this flood, ESA decided to switch on the image mode (IMM)
of the Envisat-ASAR sensor, in order to capture the flood in more detail. The best
overpass of the satellite during the flood propagation over de Chao Phraya was on
13 October 2011. The resulting map generated by our algorithms, showing water data
thresholded on probabilities higher than 70 % and quality higher than 70 %, is provided
as a Google Earth flood map on the left of Fig. 9. During processing it was decided
to not incorporate the HAND filter, in order to analyse what the best threshold is for
this filter is in this region. Analysing the flood map in more detail, leads to a number of
interesting observations:

— Elevated features, such as roads, embankments and railways can be distin-
guished in our image. These objects constrain the flood water and are marked
by a sharp boundary between pixels detected as dry land, and pixels detected as
flooded.

— Bangkok itself did not suffer extensive flooding. This qualitatively corroborates our
result.

— Just East of Bangkok, there are many flooded rice paddies. These paddies and
their borders are clearly visible in our image as square like features.

To show the predictive value of the HAND in Thailand, the thresholded detected flood-
ing by the Global Flood Observatory on the 13 October 2011 using ASAR IMM is
superimposed on the HAND image in Fig. 9 (right panel). The Thailand region shows
a strong correlation between flooded areas and low HAND index values between 0 and
1.
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11 Comparison/combination of ASAR and MODIS maps

The Dartmouth flood observatory (DFO) heavily utilizes the two MODIS sensors aboard
the NASA Terra and Aqua satellites. Currently, a team at NASA is also assisting this
effort by performing the classification procedure in an automated way (their NRT Flood
product). In this automated process, the NRT processor collects and combines 4 im-
ages over each 10 degree latitude by 10 degree longitude subset, and over a forward
running period of 2 days (thus, two images/day worldwide; four images/two days). The
resulting GIS file shows surface water as boundary polygons: each such “daily” file ac-
tually includes two days of imagery, using a MODIS band 1/band 2 threshold approach
to detect water and requiring at least two detections per pixel in order to exclude cloud
shadows (which have similar spectral characteristics to water, but which change loca-
tion over time).

Because the DFO approach does suffers from cloud cover and the present SAR-
based approach provides less frequent temporal coverage, it is desirable to merge
the two independent approaches for flood mapping. A first attempt to merge the two
products was accomplished using IMM mode data from Envisat-ASAR, collected on
13 October 2011, and the DFO MODIS based data from 13 October 2011. Because
DFO provides a binary map (flooded, or non flooded) and our Global Flood Observa-
tory (GFO) produces a probability map of flooding, along with a quality indicator for
this probability, it was decided to establish a binary map from the GFO product as well.
This was done by thresholding the ASAR data as described in Sect. 10. The results are
shown in Fig. 10. The image shows the high correlation between the two complemen-
tary and independent mapping methods. We conclude also that our algorithm is useful
to detect floods in cloud-covered areas. In particular the most right image shows that
there are highly plausible flood areas located by the SAR processor, which were cloud-
obscured in the DFO product. These additional flood patterns clearly follow elevated
features in the landscape such as roads and railways.
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12 Improvements and present application of the topographic (HAND) index

The process to reach a topologically sound and accurate drainage network introduces
occasional canyon-like artefacts into any DEM, as a result of aberrant height differ-
ences adjacent to the drainage network. These artefacts are transferred to the HAND
grid during computation. An example of these artefacts is shown in detail in Fig. 11 in
the area indicated by the red ellipse. We processed the currently used HAND indices
from the HYDRO1k dataset, based on GTOPOS30 data. In the currently used HAND we
use the empirically based data threshold of 15 (i.e. all data higher than 15 will not be
processed and set to 0 % water probability and 100 % quality indicator). This is mainly
done to be “on the safe side”: to prevent flood-prone areas with artefacts to be unfairly
filtered out.

Renno et al. (2008) state that when using original SRTM data for the HAND grid com-
putation, these artefacts associated with the corrected DEM can be avoided. To filter
more efficiently an improved version is recommended, using the HAND-data based on
the HydroSHEDS 30 arc sec DEM (Lehner et al., 2006), in which the data are upgraded
to streams that are burned less deep in the DEM.

Also in regard to topographic effects, the simplified explanation shown in Fig. 12 (left
panel) shows that terrain slopes, when assuming a small swath width and thus neglect-
ing the ellipsoid of the geoid, cause most of the difference between incidence angle and
local incidence angle. Note that a wrongly assumed incidence angle causes a different
backscatter returned to the satellite: the ¢ — @ pair shifts in our 2-D histograms. Fig-
ure 12 (right panel) shows a slice of the 2-D histogram at a certain incidence angle
for a certain place on the globe. Correcting for this slope will shift the position of o — a
pairs and cause a noticeable shift in the 2-D histograms. For the present algorithm,
however, this improvement is not deemed efficient, as we already filter out non-flood
prone areas. Removing all HAND values higher than 15 in fact means that the pixels
we do use are never higher than 15m above the nearest drainage point. The largest
shift of incidence angle is thus expected directly near the drainage point.
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Looking again at Fig. 12, and assuming a GFO pixel size of 1 x 1km, the shift in
incidence angle is

a—@:,@:arctan; 9)

where g is the terrain slope, a is the incidence angle, 8 the local incidence angle, z
the elevation and x the length for which the slope is calculated. The shift is less than
1° when z =15m and x = 1km.

Lastly, in regard to topographic corrections: when working with 1 x 1 km pixel scales,
we can consider the errors in global topography models with roughly the same res-
olution, such as GTOPOS0 or the newer 30-arc second global mosaic of the Shuttle
Radar Topography Mission (SRTM; USGS, 2004). According to Rodriguez at al. (2006)
SRTM can give average absolute height errors per continent up to almost 10 m and lo-
cally even higher. Harding et al. (1999) indicate that GTOPO30 can reach even higher
errors of 30 m. When we consider this error in z in Eq. (9), it is clear that a global topog-
raphy model can also cause shifts in incidence angles of the same order and higher
than the maximum shift we expect in our 2-D histograms after applying the HAND-index
based filter. When furthermore taking into account computer processing efficiency, it is
practical to avoid the correction to local incidence angle, at least until higher quality
global digital elevation models are available.

13 Use of these algorithms for Sentinel-1 data

When looking at the NetCDF output of the water probabilities and quality indicator and
using only Level-1 Envisat-ASAR GM1 data, the automated algorithm presented in this
article generates a total daily output of approximately 500 MB without the temporary
local storage needed for the processing sequences. This is slightly less and in the
same order as the total daily data volume of the Level 1 GM1 data stored on the ESA
Rolling Archive (in between 600-800 MB per day of GM1 data). The main reasons for
this evenly large data size are:
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— There is a “downscaling” from 500 x 500 m pixels to 1000 x 1000 m resolution, also
commonly accepted as the “ground resolution”;

— wherever possible, numbers are stored in low-size formats (e.g. bytes instead of
integers).

When we extrapolate the findings of data volumes to the expected Sentinel-1 data
sizes, and we assume that a Level-1 base product is 4 times larger than the Level 0 data
size (Hornacek et al., 2012), we estimate a total data size of 4 x 320 TB/365d ~ 3.5TB
of Level-1 data volume per day for all acquisition regions when assuming one Sentinel-
1 satellite. If the further assumptions is made that half of these data consists of the
main Interferometric Wide Swath (IW) mode, generating pixels of 5 x 20m (Attema
et al., 2009), and the pixel size of the NetCDF water probability and quality indicator
output will be 20 x 20m, the estimated data volume of a Sentinel-based NRT Global
Flood Observatory (GFO) based on the presented algorithms will be approximately
0.44TB per day, almost 1000 times more than the current output. Any changes in
chosen spatial resolutions and foreseen data sizes will directly influence the size of the
GFO output.

14 Conclusions

In preparation for the Sentinel-1 SAR satellite, and in order to address the urgent need
for fast flood water detection and mapping, systematic and automated processing algo-
rithms are needed. A binary product (e.g. water/not water or flooded/not flooded) is not
optimum, as SAR-based classification products include noise and therefore an uncer-
tainty indication is desirable. In this article an automated method to calculate probability
of water, including a quality indicator, from Level-1 Envisat or Sentinel 1 SAR data is
presented. The method is a new contribution, primarily because in our approach data
over a certain time span are stored in 2-D histogram training sets in the incidence an-
gle — backscatter domain and because the algorithms automatically calculate a water
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probability and a quality index for each image pixel. Also, the application of the HAND
index as a pre-processing filter improves the final result.

Water probabilities and quality indicators are calculated and stored in (daily) folders
that can be made publicly available as soon as they are generated. The average total
daily size when working with Envisat ASAR Global Mode data is ~0.5 GB. Projected
to future Sentinel-1 data from one satellite, we calculate that the total data size would
be ~0.44 TBd'1, which is about 1000 times more.

A first merge with MODIS imagery in a case study in Thailand shows strong re-
semblance between the ASAR and MODIS derived results. At locations where MODIS
suffers from clouds, ASAR shows hydrologically correct results, as observed through
the clouds and as verified by other knowledge from the ground. We recommend more
research in merging SAR and MODIS derived water imagery, to combine the strengths
of both methods and improve the desired operational global surface water product.
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Fig. 2. Trained and smoothed 2-D histograms for land and water (left panels) as derived from
two years of WSM backscatter data in the Netherlands (right panel).
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Flood Control ©
2015 §

Fig. 5. Water probabilities plotted in Google Earth, collected over 24 h from 5-6 October 2011
over an example location in Kazakhstan. In the more transparent pixels the ability of the GFO
algorithm to distinguish dry land from water, expressed in the quality indicator g, is lower.
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Flood Control
2015

Fig. 6. Water probabilities, similar to Fig. 5, but now presenting the coverage from 1 until 10

October 2011.
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Fig. 7. Different histograms as shown on a global backscatter map. Different areas in the world
show different backscatter characteristics. In this figure, the backscatter characteristics for rain
forest (left panel), desert (middle panel) and lakes (right panel) are shown.
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Fig. 8. Output of a single day 10 x 10 lat-lon tile of water probability (left panel) and the cor-
responding quality indicator q. Places where the HAND index are higher than 15 are set to
g = 100, water probability = 0 in a pre-processing phase.
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MODIS (DFQ)

ASAR (GFO)

Fig. 10. The Chao Phraya basin at different zoom levels. Left panel: largest extent. Towards
right panel: zoomed extents. Flood classification from Envisat ASAR (IMM) is shown in blue
and is underlying the flood classification based on MODIS in red.
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