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Calibration is a crucial step in the application of hydrological models and is typically performed using in situ
streamflow data. However, many rivers on the globe are ungauged or poorly gauged, or the gauged data are
not readily available. In this study, we used remotely-sensed surface water extent from the Global Flood Detec-
tion System (GFDS) as a proxy for streamflow, and tested its value for calibration of the distributed rainfall-runoff
routing model LISFLOOD. In a first step, we identified 30 streamflow gauging sites with a high likelihood of reli-
able GFDS data. Next, for each of these 30 sites, the model parameters related to groundwater and routing were
independently calibrated against in situ andGFDS-derived streamflow time series, and against the rawGFDS sur-
face water extent time series. We compared the performance of the three calibrated and the uncalibratedmodel
simulations in terms of reproducing the in situ streamflow time series. Furthermore, we calculated the gain
achieved by each scenario that used satellite-derived information relative to the reference uncalibrated scenario
and the one that used in situ data.
Results show that using the rawGFDS data as a proxy for streamflow for calibration improved the skill of the sim-
ulated streamflow (in particular the high flows) for 21 of the 30 sites using correlation as a metric. Furthermore,
we discuss a calibration strategy using a combination of in situ and satellite data for global hydrological models.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hydrological models are indispensable tools for increasing our un-
derstanding of the hydrological cycle, for assessing the hydrological im-
plications of climate and land-use change, and for flood and drought
forecasting. Model calibration and validation are essential prerequisites
to obtain reliable streamflow estimates from hydrological models
(Minville et al., 2014; Werner, Blazkova, & Petr, 2005) and are typically
performed using in situ streamflow data. However, in situ streamflow
data are unavailable for the majority of the land surface, particularly
for the most flood vulnerable countries, and the number of operational
stations is rapidly decreasing (Hannah et al., 2011; Sivapalan, 2003;
Wohl et al., 2012).

Satellite remote sensinghas the ability to provide information on hy-
drological fluxes and state variables at (near-)global coverage and
(near-)real time, and at frequent temporal intervals, and as such pro-
vides unique opportunities for enhancing model simulations in remote
areas (vanDijk & Renzullo, 2011). In recent decades, there have been in-
creasing efforts to improve models by incorporating remotely-sensed
data on hydrologic variables such as evaporation (Zhang, Chiew,
22, I-21027 Ispra, Italy.
-Romero).
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Zhang, & Li, 2009), surface soil moisture (Beck, De Jeu, Schellekens,
Van Dijk, & Bruijnzeel, 2009; Hirpa, Gebremichael, Hopson, Wojick, &
Lee, 2014; Wanders, Bierkens, de Jong, de Roo, & Karssenberg, 2014),
total water storage (Jiang et al., 2014; Ramillien, Famiglietti, & Wahr,
2008), and snow and ice cover (Bergeron, Royer, Turcotte, & Roy,
2014; Dietz, Kuenzer, Gessner, & Dech, 2012), as well as vegetation-
related variables such as leaf area index (LAI; Zhang, Vaze, Chiew, &
Liu, 2011) and normalized difference vegetation index (NDVI;
Donohue, Roderick, & McVicar, 2007). In addition, various studies
have examined the value of remotely-sensed variables related to surface
water, including inundation extent, river width, and water levels (see
overview in Table 1). Some of these studies used satellite-derived infor-
mation to calibrate model parameters or to derive empirical rating
curves, while others focused on the direct use of changes in water
level or width for calibration, using a variety of hydrodynamic or hydro-
logical models. Although these studies reported promising results, a
major drawback from the point of view of global hydrologicalmodelling
is that they often focused on a small region.Most studies focused on sin-
gle river reaches and the validation was performed using a relatively
small number of gauges (n b 6) (Di Baldassarre, Schumann, & Bates,
2009; Domeneghetti et al., 2014; Hostache et al., 2009; Mason, Bates,
& Dall' Amico, 2009; Milzow, Krogh, & Bauer-Gottwein, 2011;
Montanari et al., 2009; Sun, Ishidaira, & Bastola, 2010, 2012a, 2012b;
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Summary of relevant studies where satellite-derived inundation extent, river width, and/or water levels were used to calibrate a hydrodynamic and/or hydrological model. Studies are
listed in alphabetical order of author.

Study Satellite and
sensor/Acquisition
frequency

Model Study area and
no. of in situ
river gauges
used

Study
period

Objective/Approach Key findings

1 Di Baldassarre
et al. (2009)

ENVISAT ASAR
and ERS-2 SAR (1
image each used)

LISFLOOD-FP 10-km of the
Dee and 8-km of
the Alyn River
(UK) (3 gauges)

Dec.
2006
flood
event

Use inundation map derived from
satellite imagery

Need to move from deterministic binary
wet/dry maps to probabilistic fractional
flood extent maps

2 Domeneghetti
et al. (2014)

ENVISAT and
ERS-2/35-day

HEC-RAS ~140 km reach
of the Po River
(northern Italy)
(2 gauges)

16
years

Identification of Manning's roughness
coefficient

Combine satellite time series with
hydrometric data to increase the reliability
of the hydraulic model

3 Getirana
(2010)

ENVISAT
altimetric data/35
days

MGB-IPH model Branco River
(northern
Amazon Basin,
Brazil) (11
gauges)

10
years

Use empirical equations to estimate river
depth from modelled streamflow

Pioneering use of spatial altimetry data in
the automatic calibration of hydrological
models

4 Getirana et al.
(2013)

ENVISAT
altimetric data/35
days

HyMAP (based
on CaMa-Flood
+ ISBA)

Amazon Basin
(Brazil) (4
gauges)

10
years

Use of altimetric data to calibrate four
parameters: the subsurface runoff time
delay, Manning's roughness coefficient,
river width, and bankfull height

Demonstrated use of altimetric data in the
automatic calibration of model parameters

5 Hostache
et al. (2009)

ENVISAT SAR/A
few days to 30
days (1 image
used)

HEC-RAS 18-km reach of
the Alzette River
(Luxembourg)
(6 gauges)

Jan
2003
flood
event

Estimation of spatially distributed water
levels from remote-sensing observations
and integration of satellite-data
information in a hydraulic model in order
to reduce model uncertainties

It provides distributed water levels with a
high spatial density and provides more
reliable hydraulic models thanks to these
water levels that allow a spatial evaluation
of model performances

6 Mason et al.
(2009)

ERS-1 SAR (1
image used)

LISFLOOD-FP 12 km of the
Thames River
(UK) (No
gauges,
comparison
with LiDAR)

1992
flood
event

Comparison of water level probabilities
based on flood waterline estimates
derived from both SAR and LiDAR data to
that derived from only SAR data

The use of water levels unable to restrict
the parameter range of acceptable model
runs and hence reduce the number of runs
necessary to generate a flood inundation
uncertainty map

7 Milzow et al.
(2011)

ERS-2, and
ENVISAT SAR
altimetric data/35
days

SWAT Okavango
catchment
(Southern
Africa) (3
gauges)

11
years

Satellite altimetry was used to derive
water level fluctuations at three locations
in the catchment for channels
approximately 150 m wide

The combination of multiple independent
observational datasets improves the
parametrization of the hydrological model

8 Montanari
et al. (2009)

ERS-2 and
ENVISAT SAR
altimetric data/35
days (1 image
each used)

Nash IUH +
HEC-RAS

Alzette River
basin
(Luxembourg)
(2 gauges)

Jan.
2003
flood
event

Assessment of the value of
remote-sensed water levels in an
aggregated modelling system

A first step toward a systematic remote
sensing-based surface water monitoring
system that may quasi-continuously
provide valuable information for
sequentially updating coupled H–H
models

9 Sun et al.
(2012a)

JERS-1 SAR images
(1 image used)

HYdrological
MODel
(HYMOD)

Mekong River
(Asia) at Pakse
(1 gauge)

4 years Develop a conceptual framework for
rainfall-runoff models in ungauged
basins using satellite-derived river width
or water surface elevation

Illustrates that under both the average and
low designed satellite observational
frequencies, the simulated streamflow had
an acceptable degree of accuracy

10 Sun et al.
(2012b)

TOPEX/Poseidon
(T/P)/~10 days

HYMOD Upper
Mississippi
Basin at Clinton
(US) (1 gauge)

5 years Attempt to use water surface elevation
data obtained from satellite radar
altimeters

Comparison with calibration using
streamflow data shows that for the new
calibration method, the uncertainty in the
modelling process is higher, and the
parameter space is less constrained

11 Sun et al.
(2010)

JERS-1 SAR (16
images used)

HYMOD Mekong River
(Asia) at Pakse
(1 gauge)

4 years Minimize the difference between river
widths observed from space and
simulated widths by tuning parameters
of rainfall-runoff model and at-a-station
hydraulic geometry relation
simultaneously

Wide applicability for reproducing river
streamflow time series on the daily scale
in ungauged basin if satellite data is
available

12 Tarpanelli
et al. (2013)

ENVISAT ASAR (1
image used)

Modello
Idrologico
Semi-Distribuito
(MISD)

20-km reach of
Genna stream
(Italy) (1 gauge)

6 flood
studies
(1 day
long
each)

Calibration of Manning's roughness
coefficient by comparing the flooded
areas derived from ASAR imagery and
hydrologic- hydraulic modelling.

The assessment of the Manning's
roughness for the main channel and the
floodplain is obtained from hydraulic
simulations and satellite data for a flood
event on a small basin (90km2).

14 This study Passive
microwave
(AMSR-E,
TRMM)/daily

LISFLOOD
(GloFAS
System)

Africa, Europe,
North America,
and South
America (30
gauges)

13
years

Assess the value of satellite-derived
surface water extent for calibration of a
hydrological model

Improvement in the timing of the
simulated flow peak, and of the model skill
in term of volume accuracy using
satellite-derived river streamflow, when
available
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Tarpanelli, Brocca, Melone, & Moramarco, 2013), while others applied
the calibration to more locations (n b 12) but all within the same catch-
ment (Getirana, 2010; Getirana, Boone, Yamazaki, &Mognard, 2013). In
addition, the calibration periods used in these studies are not long
enough, if the aim is to improve rainfall-runoff simulations of models
at multi-decadal time scales, since in many cases the focus has been
on specific flood events of short duration. In these studies, the satellite
data were derived frommultiple sensors, and ranges of the electromag-
netic spectrum, and at different spatial and temporal resolutions. The
limitations described are in most cases due to the infrequent overpass
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cycle of satellites and/or the high cost of purchasing data at a sufficiently
high resolution.

In this research, we used data products derived from the Global
Flood Detection System (GFDS; Kugler & De Groeve, 2007) due to its
capability for detecting and mapping major river floods worldwide in
near-real time. GFDS uses a range of passive microwaves sensors to
retrieve surface water extent changes. Such data products have the po-
tential to be linked to a flood forecasting system like the Global Flood
Awareness System (GloFAS; Alfieri et al., 2013). The mission of both
systems is to be a supporting tool in the context of large flood events
for decision makers, including national and regional water authorities,
water resource managers, civil protection and first line responders,
and international humanitarian aid organizations. Furthermore, both
GFDS and GloFAS have the same daily temporal resolution and approx-
imately the same spatial resolution (0.09° and 0.1°, respectively).
GloFAS has been pre-operational since 2011, delivering global probabi-
listic streamflow forecasts. After running the system for three years, and
acquiring sufficient data to compare against observations, themodel has
proven its value in forecasting large-scale floods events around the
world. However, like themajority of global hydrological models, GloFAS
has not been calibrated yet, and a calibration can potentially further
improve its forecast skill.

The aim of this study is to assess the potential of using remotely-
sensed GFDS surface water extent to improve hydrological model simu-
lations through calibration of large-scale catchments having a broad
range of morphologic, river, climatic, physical, and vegetation charac-
teristics located in Africa, Europe, North America, and South America.
The specific objectives of this study are: (1) to assess whether calibra-
tion using only satellite-derived passive microwave data improves the
skill of the simulated streamflow; (2) to quantify the gain in skill
using various calibration scenarios; and (3) to summarize the benefits
and limitations of calibration using satellite-derived data.

2. Data and study regions

2.1. Satellite-derived data

The GFDS system (http://www.gdacs.org/flooddetection/) mea-
sures daily water surface extent changes using a range of satellite-
based passive microwave sensors. The method uses the difference
in brightness temperature at a frequency of 36.5 GHz between
water and land surface to detect the proportion of within-pixel
water and land (Kugler & De Groeve, 2007). The retrieved changes
in brightness temperature are first gridded into a product with a
pixel size of 0.09°×0.09°, and the system then provides a daily out-
put. Satellites never pass over the same track at exactly the same
time and therefore the operational GFDS applies a four-day
forward-running mean to compute the final value, which also fills
any gaps present in the record (Kugler & De Groeve, 2007). The
GFDS flood-merged product currently (i.e. since January 2015) uses
data from both the Advanced Microwave Scanning Radiometer 2
(AMSR-2) and the Global Precipitation Mission (GPM) sensors. How-
ever, GFDS used data from the Tropical Rainfall Measuring Mission
(TRMM) for the period 1998–2014 and from the AMSR — Earth Ob-
serving System (AMSR-E) for the period June 2002–October 2011.
GFDS data outputs are available since 1998 for latitudes 38°S–38°N.
From June 2002 after the inclusion of AMSR-E data the coverage
was expanded to latitudes 90°S–90°N. Brakenridge, Nghiem,
Anderson, and Mic (2007); Brakenridge, Nghiem, Anderson, and
Chien (2005) and Revilla-Romero, Thielen, Salamon, De Groeve,
and Brakenridge (2014) demonstrated that the GFDS data can be
used to monitor streamflow, for multiple catchments around the
globe. For this study, we employed both the daily raw GFDS signal
and GFDS estimated streamflow time series. To obtain GFDS estimat-
ed streamflow, we used in situ streamflow data to translate the di-
mensionless signal into volumetric streamflow units for each
studied site. Regression equations were obtained using monthly
means from daily values, and GFDS-measured streamflow was
derived as follows:

QGFDS measured of X month ¼ amonth þ bmonth � signal: ð1Þ

A full description of the methodology can be found in Revilla-
Romero et al. (2014). Data from in situ gauges are needed for this and
therefore this approach cannot be used at locations that are completely
ungauged. However, these datasets can fill data gaps or extend the re-
cords of discontinued gauges.

2.2. In situ streamflow data

Daily in situ streamflow time series were obtained from the Global
Runoff Data Centre (GRDC, 2010) for gauging stations fulfilling the
criteria presented in Section 3.1.

2.3. Reference climatology and input runoff forcing

To apply the rainfall-runoff model we used offline simulations from
ERA-Interim/Land (Balsamo et al., 2013), a global reanalysis of land-
surface meteorological variables from 1980 to 2013 at a spatial resolu-
tion of 80-km. ERA-Interim/Land is the result of a land-surface model
simulation using the HTESSEL land surface scheme (Balsamo et al.,
2009), with meteorological forcing from ERA-Interim and precipitation
adjustments based on the Global Precipitation Climatology Project
(GPCP) v2.2. (Adler et al., 2003; Huffman, Adler, Bolvin, & Gu, 2009).
HTESSEL is the land-surface scheme of the operational ECMWFweather
model Integrated Forecast System (IFS). Output datasets from HTESSEL
are used within the current GloFAS model setup (further details in
Section 3.2.1).

3. Methodology

3.1. Selection of testing sites

We selected test sites based on Revilla-Romero et al. (2014), which
examined how sitemorphologic, hydrologic, climatic, physical, and veg-
etation characteristics influence the quality of the GFDS signal which
can be influenced by ground conditions such as presence of snow/ice,
land cover type, and topography (Brakenridge et al., 2012). For example,
the canopy and crownwater content from closed forests type can influ-
ence the microwave emission properties (Chukhlantsev, 2006). Fur-
thermore, the capacity of the GFDS to detect changes in streamflow
volume also depends on local characteristics of the river such as the
mean daily streamflow, floodplain size, and channel cross-section
(Revilla-Romero et al., 2014). Additionally, the presence of hydraulic
control measures such as regulated dams can cause a disagreement be-
tween the simulated streamflow that measured in situ, if the impacts of
the dams are not accounted for by the hydrologicalmodel. In such cases,
further research is needed to quantify the added value of GFDS since the
flow regimes are influenced by the non-natural factors.

From our initial set of 322 gauging stations, we used the following
criteria for the GFDS grid cell containing the gauging station, in order
to exclude or include sites with features that can affect the quality of
the GFDS signal or complicate the simulation of the streamflow:

1. Exclude sites that have, closely upstreamdams/hydraulic controlmea-
sures (GRanD Database; Lehner, Verdin, & Jarvis, 2008), land cover
classified as “artificial” or “closed forest” (Globcover; Bontemps et al.,
2010), or “Intermediate wetland/lakes” wetland type (Global Lakes
and Wetlands Database; Lehner & Döll, 2004). This reduced the
dataset from 322 to 240 stations.

2. Include all sites that are located within grid cells classified as inun-
dated area by the Global Inundation Extent from Multi-Satellites

http://creativecommons.org/licenses/bycd/4.0/
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(GIEMS, Prigent et al., 2012), which has a resolution of 0.25°× 0.25°,
based on the calculated maximum extent from 1998 to 2007, and
that meet either of the following two criteria:

2.1. At least 50% of the GFDS grid cell is classified as “floodplain and
freshwatermarsh” or “swamp forest and flooded forest”wetland
cover type by the Global Lakes andWetlands Database (Lehner &
Döll, 2004). Out of the 240 remaining stations, 30 fulfilled this
criterion.

2.2. A mean daily streamflow greater than 500 m3 s−1. Revilla-
Romero et al. (2014) showed that during normalflow conditions
(i.e., not floods) the quality of the GFDS signal was lower
(i.e., higher noise) on those rivers with mean daily streamflow
less than 500 m3 s−1. However, during flood conditions, the
GFDS signal is expected to perform well at those locations. The
mean flow was calculated from in situ observation time series.
However, if ungauged, this can be obtained from datasets such
as the global composite of mean annual surface runoff (Fekete,
Vörösmarty, & Grabs, 2002; Müller Schmied et al., 2014) or
fromhydrological modelling simulations. Out of the 240 remain-
ing stations, 61 fulfilled this criterion, of which 21 stations also
fulfil criterion 2.1.

Thus, 21 stations out the 240 locations fulfilled both criteria 2.1 and
2.2, a further 9 stations fulfil criterion 2.1 only, and a further 40 stations
fulfil criterion 2.2 only, yielding 70 eligible sites in total. We randomly
selected 30 out of 70 eligible sites in different climatic regions to test
the usefulness of the GFDS signal for model calibration. Only 30 sites
were considered as a proof of concept study, to optimize computational
time. The 30 stations are distributed throughout South America (18),
North America (5), Europe (4) and Africa (3) (Fig. 1). See Appendix A
Table A1 for additional details for each site.

Additionally, we calculated the Topographic Index (TI, Beven &
Kirkby, 1979) within our study sites using the global high-resolution
(15 arc sec) map of Marthews, Dadson, Lehner, Abele, and Gedney
(2015), which is based on the HydroSHEDS dataset (Lehner et al.,
2008). TI is a measure of the relative propensity for the soil, at a given
point, to become saturated at the surface, given the area that drains
into it and its local outflow slope (Beven & Kirkby, 1979). Its values
range from about 0 to 25, and are low at ridge tops and high in valleys
along drainage paths and in zones of water concentration on the land-
scape (Wilson & Gallant, 2000). In Marthews et al. (2015), TI mean
values were spatially calculated by wetlands type (Lehner & Döll,
2004). “Floodplains and freshwater marsh” mean value is 7.38 and for
river pixels is 8.81. For this study, we carried out a spatial analysis
based on both the performance of the GFDS obtained for the locations
fromRevilla-Romero et al. (2014), and themeanTI valuewithin each lo-
cation. We found that those sites with higher performance in terms of r
have at least 16% of each satellite grid location covered by a TI value
around 8 or higher.

The high resolution global inundation map (GIEMS-D15, Fluet-
Chouinard, Lehner, Rebelo, Papa, & Hamilton, 2015) could also be used
as a guidance for the selection of locations according to the GFDS signal
quality. However, it was not available for distribution at the moment
this study was carried out.

3.2. Hydrological model

3.2.1. LISFLOOD
LISFLOOD is a GIS-based spatially distributed hydrological model,

which includes a one-dimensional channel routing model (Van Der
Knijff, Younis, & De Roo, 2010). The LISFLOOD model has been used
for flood forecasting (Forzieri et al., 2014; Thielen, Bartholmes, Ramos,
& de Roo, 2009; Thiemig, Bisselink, Pappenberger, & Thielen, 2014),
flood inundation modelling (Bates & De Roo, 2000), climate change im-
pact assessments (Alfieri, Burek, Feyen, & Forzieri, 2015; Rodrigo Rojas,
2013), land use change impact assessments (De Roo, Odijk, Schmuck,
Koster, & Lucieer, 2001; De Roo, Schmuck, Perdigao, & Thielen, 2003),
and parameter uncertainty assessments (Feyen, Vrugt, Nualláin, van
der Knijff, & De Roo, 2007), among many other purposes. For example,
LISFLOOD is currently running within the European Flood Awareness
System (EFAS) on an operational basis (Pappenberger, Thielen, & Del
Medico, 2011; Thielen et al., 2009) for the entire Europe on a grid of
5 × 5 km spatial resolution. LISFLOOD is also used for the African
Flood Forecasting System (AFFS; Thiemig, Bisselink, Pappenberger, &
Thielen, 2015) at 0.1° spatial resolution. Within GloFAS, a combination
of HTESSEL and a simplified setup of LISFLOOD is used at the global
scale at a resolution of 0.1° (Fig. 2). This means that LISFLOOD uses sur-
face runoff and sub-surface runoff fluxes from HTESSEL as model input,
instead of using the basic meteorological data (precipitation, tempera-
ture, etc.) to force themodel. LISFLOOD subsequently simulates ground-
water storage, lakes and reservoirs, and the river routing processes. For
this study, a 34-year (1980–2013) daily streamflow time series has
been calculated using ERA-Interim/Land surface runoff.

To run the model, we used the improved river network obtained
from Kimball, Li, Huang, Leung, and Adler (2012) and new global river
width estimates from the Global River Width Database for Large Rivers
(GRWD-LR, Yamazaki et al., 2014). As a result of this update of river
widths, the “bank full” channel depth was recalculated using the same
method as in the LISFLOOD setup used in Burek et al. (2013), while
the Manning's roughness coefficient and channel slope remained the
same. Other efforts such as the inclusion of lakes and reservoirs (Zajac,
Salamon, Burek, De Roo, & Revilla-Romero, in preparation), and tests
on the effect of reference climatology on the skill of the flood forecast
(Hirpa et al., submitted for publication) are underway. Further details
of the LISFLOOD model and the description of the equations can be
found in Burek et al. (2013).

3.2.2. Calibration parameters, simulation scenarios and studied period
Similar to the calibration of LISFLOOD for Europe (Feyen et al., 2007;

Zajac et al., 2013), the global setup needs calibration of the parameters
to control percolation to the lower groundwater zone, the residence
time of the upper and lower groundwater zone, and the routing param-
eters. The calibrated parameters are listed in Table 2. The parameter
space was defined by physically reasonable lower and upper limits for
each parameter. Initially, when the LISFLOOD model was setup for
GloFAS in 2011 for the pre-operational launch, these parameters were
carefully selected using our previous experience with developing and
calibrating the model. In this study, however, we carried out parameter
value estimation through model calibration for a selection of test sites.
Note that this setup of LISFLOODuses the surface and sub-surface runoff
dataset from HTESSEL. Therefore, the input fluxes into the system re-
main equal, and the parameters that control the infiltration capacity,
preferential bypass flow, and snow-melt coefficient will not be calibrat-
ed.We recognize that this is a drawback and a potential limitation of the
calibration methodology. There are three different calibration scenarios
(Table 3). The uncalibrated scenario is Qsim0, and all calibrated scenar-
ios that use different calibrated data such as in situ observed
streamflow, GFDS satellite-derived streamflow, and the raw GFDS sur-
face extent signal are named Qsim1, Qsim2, and Qsim3, respectively.
The performance of the calibration runswere comparedwith the uncal-
ibrated (Qsim0) simulated streamflow of the LISFLOOD model embed-
ded within GloFAS.

Note that due to the dimensionless character of the rawGFDS signal,
and to avoid substantial changes in water volume while optimizing the
flow peak, when using scenario Qsim3 the parameters that control the
quantity of loss rate out of the lower zone (GwLoss) and the transmis-
sion loss, including simulation of evaporation, water extraction, and
leaching (TransSub), are not calibrated, but instead these are set to the
default values. For this scenario Qsim3, the inclusion of the two afore-
mentioned parameters provides too many degrees of freedom because
there is not enough information in the GFDS signal alone to constrain



Table 2
LISFLOOD calibration parameters, including upper and lower bound, and default value for the uncalibrated simulation setup. *Note that GwLoss and TransSub are not calibratedwhen using
the raw GFDS signal (scenario Qsim3).

Parameter
name

Description Unit Min Max Default

Tuz Time constant for water in upper zone D 3 40 20
Tlz Time constant for water in lower zone d 50 2500 1000

GwPerc
Maximum rate of percolation going from the
Upper to the Lower response box

mm d−1 0.01 2 0.5

GwLoss* Maximum loss rate out of the Lower response box mm 0 0.35 0

TransSub* Linear transmission loss parameter (Rao & Maurer, 1996) – 0 0.6
Estimated based on relationship with
mean annual potential evaporation

CalChanMan Multiplier applied to Channel Manning's n (bankfull routing) – 0.1 15 4.0
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them. As a consequence, it might take very high values in order to opti-
mize the linear correlation between simulated and in situ streamflow
and result in an important loss of flow volume. During our initial tests,
this error was observed and was substantial, giving unrealistic
streamflow simulations for some catchments such as the Amazon and
Mississippi.

To define the calibration and validation periods for each catchment,
we used the split-sample procedure (Refsgaard & Storm, 1990) for the
period of simultaneous in situ and satellite-derived data, where the
first half was used for validation and the second half for calibration.
The first year of the calibration period was used as warm-up, and thus
disregarded in computing the performance statistics. This means that
for stations located below 38°N with sufficient in situ data, the calibra-
tion period is 2004–2010with 2004 used as a warm-up, and the valida-
tion period is 1998–2003. For stations located above 38°N with
sufficient in situ data, the calibration period was 2006–2010 with
2006 used as a warm-up, while the validation period is mid-2002-
2005. The aforementioned period was modified when a particular site
had less than 10 years in total of in situ data available during these pe-
riods, as was the case for the Zambezi River at Senanga, the Niger
River at Lokoja, and the Parnaiba River at Luzilandia.

To initialise the groundwater storage of the model, we performed a
pre-run for each simulation and parameter set in order to calculate
the average recharge. Even though computational time increased, this
was done because the time needed to initialise any storage component
of the model is dependent on the average residence time of the water
contained in it, and the warm-up period might not be sufficiently long
for a correct initialisation of the storage.

3.3. Calibration procedure

The aim of model calibration is to obtain a set of parameters for
which the model simulation outputs are as close as possible to the
ground measurements. We test the use of both the raw remotely-
sensed surface water extent signal (GFDSraw) and the re-scaled signal
(QGFDS) as a proxy for in situ measured streamflow. For all scenarios,
we calibrated the model using an automatic process with the same
model setup, input dataset (Section 2), range of parameter values, and
calibration/validation periods (Section 3.2.2). We performed a single-
objective calibration for the in situ observed streamflow (Qsim1) and
Table 3
Summary of simulation scenarios.

Scenario Description Objective function

Qsim0 Uncalibrated –
Qsim1 Calibrated using Qground KGE′
Qsim2 Calibrated using QGFDS KGE′
Qsim3 Calibrated using GFDSraw Linear correlation (r)
GFDS estimated streamflow (Qsim2) to assess the skill of the model
simulations using this optimisation method. In this case, we used the
modified Kling–Gupta Efficiency (KGE′, Kling, Fuchs, & Paulin, 2012)
as an objective function.

KGE′ is a performance indicator based on the equal weighting of lin-
ear correlation (r), bias ratio (β) and variability (γ), between simulated
(s) and observed (o) streamflow values:

KGE0 ¼ 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r−1ð Þ2 þ β−1ð Þ2 þ γ−1ð Þ2

q
ð2:aÞ

β ¼ μs

μo
ð2:bÞ

γ ¼ CVs

CVo
¼ σ s=μs

σo=μo
ð2:cÞ

where CV is the coefficient of variation, μ is the mean streamflow
[m3 s−1], and σ is the standard deviation of the streamflow [m3 s−1].
For KGE′ r, β, and γ have their optimum at unity. The KGE′ measures
the Euclidean distance from the ideal point (unity) of the Pareto front,
and is therefore able to provide an optimal solution which is simulta-
neously good for bias, flow variability, and correlation.

Our purpose was to implement the best calibration framework for
the setup used for the LISFLOOD model as the intrinsic characteristics
of the data permitted. Since the GFDSraw data contain only information
on variability and timing, but not onmagnitude of the flows in volumet-
ric streamflow units, for Qsim3 we carried out a calibration using the
Pearson linear correlation coefficient (r):

r ¼
Xn

i¼1
si−μsð Þ oi−μoð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
si−μsð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
oi−μoð Þ2

q ð3Þ

where s is the simulated and o the observed streamflow values, which
range from −1 to 1, with 1 being the optimum value.

Numerous studies have successfully applied evolutionary algo-
rithms for calibrating hydrological models (Duan, Sorooshian, &
Gupta, 1992;Maier et al., 2014; Nicklow et al., 2010). For the calibration
of LISFLOOD we used the evolutionary algorithm implemented using
the Distributed Evolutionary Algorithm in Python (DEAP) module
(Fortin, De Rainville, Gardner, Parizeau, & Gagńe, 2012) using a popula-
tion size of 12, a recombination pool size of 24, and crossover and mu-
tation probabilities set to 0.9 and 0.1, respectively. The number of
generations was set by trial-and-error to 30, which we found was suffi-
cient to achieve convergence for all testing sites.

3.4. Performance comparison and skill quantification

The calibrated streamflow time series of each calibration scenario
was compared with the uncalibrated streamflow. In addition, an
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evaluation against the in situ streamflow observations was also done.
For this, the r, KGE′, Nash–Sutcliffe efficiency (NSE, Nash & Sutcliffe,
1970), and percentage of bias (PBIAS) were used. A description of the
two latter validation metrics can be found in the Appendix A at the
end of this paper. In addition, hydrographs, scatterplots, and obtained
skill scores by the calibrated simulated time series were carefully
analysed and compared with the uncalibrated simulated time series
(Qsim0) for the period 1998–2010, and also with the in situ streamflow
time series. A better performance in terms of reproducing in situ
streamflowobservations for Qsim3 thanQsim0 for the validation period
would mean that the GFDS signal has value for that particular
catchment.

Furthermore, to understand the added value of using the satellite-
derived data (QGFDS and GFDS) for model calibration, we calculated
the gain as follows:

Gain Qground ¼ B−A ð4Þ

Gain QGFDS ¼ C−A ð5Þ

Gain GFDS ¼ D−A ð6Þ

Gain QGFDS vs Qground ¼ Gain QGFDS−Gain Qground ð7Þ

where A, B, C, and D represents the skill scores obtained when compar-
ing the scenario Qsim0, Qsim1, Qsim2, and Qsim3, respectively, to in
situ measurements. This was carried out for the r and KGE′ score. At
each location, a positive value means that either Qim1 (Eq. (4)),
Qsim2 (Eq. (5)), or Qsim3 (Eq. (6)) scenario obtained a higher skill
score than Qsim0, whereas a negative value means that the score de-
creased after calibration. Furthermore, we calculated the overall differ-
ence in gain between the scenarios that use QGFDS and Qground (Eq. (7)).

4. Results

4.1. Assessing the use of satellite derived surface water data for calibration

For each scenario, including the uncalibrated model, simulated
streamflow time series were compared with the in situ measurements.
Furthermore, skill scores (r, KGE, NSE, and PBIAS) obtained for each cal-
ibrated run (Qsim1, Qsim2, and Qsim3)were compared with the uncal-
ibrated run (Qsim0). An example of the calibration optimisation
technique that use the GFDS signal as input, compared with in situ
measurement (Qground), and the simulated uncalibrated time series is
presented in Fig. 3, for station G1156 (Amazonas River at Obidos-
Linigrafo). We decided to illustrate the evaluation through this station
for the richness of information that it provides. However, the Supple-
mentary material (Table S1), includes tables with all the skill scores ob-
tained for each station, for the uncalibrated and calibrated runs, during
both the calibration and validation periods.

Looking at the figure, the time series for this location (G1156) reveal
that themodel exhibits a too-early bias in the streamflow seasonality, in
particular for the uncalibrated scenario. After calibration, the timing of
the streamflow at the peak improves whereas the timing at the low
flows worsens. This response can be partially explained by the fact
that, in this study we used the full time series of the GFDS signal, and
therefore we also included the signal in low-flow periods. During the
periods with lesser streamflow volume, the signal-to-noise ratio is
lower, and therefore the signal might not be as accurate as during
high flows or flood conditions.We also tested the possibility of applying
a cut-off value of the signal at each site for calibration, in other words, to
use only the signal above a certain threshold where the noise is mini-
mal. However, for the current studied locationswe could not find an op-
timal solution between the cut-off value and the remaining length of
data available for calibration. In order to implement this, further re-
search is needed. Therefore, as our main interest is on the performance
at the peakflows,we opted to include the full time series from theGFDS
signal. Furthermore, r is influenced by few large values, and the lowflow
might have changed as a side effect of the calibration. In addition, it is
possible that when the streamflow volume starts to decrease, the signal
retrieved from the satellite is still capturing some areas that remain wet
for a longer time within the pixel under observation. This might occur
when the flow has exceeded the bank-full channel capacity, but is also
common in meandering and braided rivers. Additionally, this delay
could be further influenced partly by the operational 4-day mean ap-
plied to the GFDS signal.

Due to the dimensionless character of the GFDS signal in this cal-
ibration scenario (Qsim3) we only use linear correlation as an opti-
misation function, but measurements of the goodness-of-fit such as
KGE′ and NSE might also improve consequently. Meanwhile, the
percentage of the bias (PBIAS) may keep the same value. This is be-
cause the parameters that control the quantity of loss rate out of the
lower zone (GwLoss) and the transmission loss (TransSub), includ-
ing simulation of evaporation, water extraction, and leaching, were
not calibrated for scenario Qsim3, and therefore have the same
values as Qsim0. However, for scenarios Qsim1 and Qsim2, the in-
clusion of the GwLoss and TransSub parameters in the calibration
resulted in reductions in the bias for stations where the uncalibrated
simulated streamflow was either substantially underestimated
(e.g., G0729), or overestimated (e.g., G1090, G1177, G1197). As a
consequence, if we also aim to improve the skill of the simulated
volumes, and there is availability of historical in situ measurements,
we could calibrate the model using the satellite-derived streamflow
measurements (QGFDS) to extent the calibration period. An example
of this can be found in the Supplementary material, for station
G1177 (River Mearim at Bacabal). Both scenarios Qsim0 and
Qsim3 obtained poor KGE, NSE, and PBIAS scores, whereas the skill
of the simulated streamflow improved on the calibration for Qsim1
and Qsim2.

In order to determine how well the simulated streamflow that uses
GFDS estimated streamflow (Qsim2) and GFDS raw signal (Qsim3) cor-
respond with the simulation that uses in situ observed streamflow
(Qsim1) and the uncalibrated simulation (Qsim0), we used box-plots
(Fig. 4). Here the results of the correlation coefficient (r), the KGE′, and
the NSE obtained by comparing all simulated time series against in situ
streamflow time series, are presented. All the obtained individual values,
also for PBIAS, are displayed in the Supplementary material. Looking at
the linear correlation (r) scores (Fig. 4, panel a), similar distributions
were obtained. Furthermore, for scenario Qsim1, Qsim2, and Qsim3 the
inter-quartile range got smaller in absolute terms and their correlation
values improved. Among these, however, scenario Qsim3 obtained a
higher score for certain stations probably because this scenario specifi-
cally used linear correlation as themetric to be optimized during the cal-
ibration procedure. Looking at the KGE (Fig. 4, panel b) similar
distributions were also obtained, although a clear overall improvement
of the simulations in Qsim1 and Qsim2 is shown in comparison with
Qsim0. This was expected because these two scenarios used KGE for cal-
ibration, providing an optimal solution which is equally good for bias,
flow variability, and correlation. As a consequence of improving the cor-
relation score on scenario Qsim3 during the calibration period, it resulted
in higher inter-quartile KGE′ values in comparisonwith Qsim0, although
this is not valid for the validation period, even though the median value
increased. Finally, theNSE values (Fig. 4, panel c), showa similar pattern
as observed with KGE′ scores. Qsim1 and Qsim2 obtained higher values
than Qsim0, with Qsim1 the best scenario. Moreover, Qsim3 shows
some improvement for the calibration period in comparison with
Qsim0, but not very relevant for the validation period. For clarity, in
the KGE′ and NSE′ graphs the station G1177 is not shown but its KGE′
values are: calibration [−3.63, −0.60, −0.60, −1.50] and
validation [−2.55, −1.11, −1.11, −3.40], and NSE: calibration
[−23.91, −7.90, −7.91, −31.50] and validation [−43.37, −15.82,
−15.84, −56.81] for Qsim0, Qsim1, Qsim2 and Qsim3, respectively.



124 B. Revilla-Romero et al. / Remote Sensing of Environment 171 (2015) 118–131
4.2. Quantifying the gain in skill for each calibration scenario

We calculated the improvement or deterioration of the skill score
obtained during the calibration and validation of the calibration scenar-
ios (Qsim1, Qsim2, and Qsim3), in relation to the uncalibrated scenario
(Qsim0), and the differences in gain between Qsim1 and Qsim2. This
was donefirstly by comparing the simulated streamflow of each scenar-
io against in situ measurements, as previously shown, and secondly, by
calculating the gain based on the r andKGE′ score of scenarios for Qsim1
(Eq. (4)), Qsim2 (Eq. (5)), and Qsim3 (Eq. (6)) with respect to the un-
calibrated scenario (Qsim0), and comparing the results of Eqs. (4) and
(5) (Eq. (7)).

Fig. 5 shows in panel a) that for the calibration period, Qsim3 ob-
tained overall the highest r gain, and in this respect the gain in sce-
narios Qsim1 and Qsim3 are very similar. On the other hand, for
the validation period there are no important differences between
the different scenarios. Note that during calibration of Qsim2, the
skill (KGE′) is calculated based on the QGFDS, so the skill always im-
proved compared with Qsim0. For calibration of Qsim3, the skill
(r) is calculated based on the GFDS, so the r skill always improved
in comparison with Qsim0. However, in this figure and analysis, the
comparison is made of Qsim2 or Qsim3 against in situ streamflow
measurements. So although these data are regarded as “ground
truth”, previous research showed that the analysis of rating curve
uncertainty leads to errors from 1.8 to 38.4% of the total volume
studied (Di Baldassarre & Montanari, 2009; Pappenberger et al.,
2006). Note that in the cases where the gain in Qsim3 is negative,
this is because although there was an improvement in the r score
during the calibration in comparison with the raw GFDS signal,
when comparing the simulated streamflowwith in situ observations,
it is possible that that score slightly decreased. In panel b) of the
same figure, we see how the KGE gains on the Qsim1 and Qsim2
are both positive in comparison to the uncalibrated run, and very
similar during the calibration and validation periods, whereas
Qsim3 obtained overall smaller gains and the median gain value in
KGE is close to 0 as expected because its calibration was not opti-
mized in this score.

Furthermore, Fig. 6 shows for scenario Qsim2 (panel a) and
Qsim3 (panel b) the KGE gain values geographically distributed.
For scenario Qsim2 and for most of the stations, there was an impor-
tant improvement of the KGE values in both the calibration and val-
idation period. However, for the stations located inMissouri (G0729)
river in North America, the simulated streamflow did not substan-
tially improve, looking at the validation period, whereas for the
other stations with negative KGE Gain values, G1083, G1121,
G1129, and G1286, their values was less than −0.03. Therefore,
there was no improvement after calibration in the skill to reproduce
in situ observations. For example, for the Yukon River, the uncali-
brated model already underestimates flow using the lowest value
of the TranSub parameter, and therefore calibration was unsuccess-
ful in reducing the flow underestimation.

For scenario Qsim3, the overall gain is smaller, as expected, because
KGE′ was not used as an optimisation objective during calibration. For
the calibration period, four locations obtained lower gain with the
range [−0.02 to −0.69], and 11 locations on the validation [−0.02 to
−0.99]. However, the increase of the r score leads to an improvement
of KGE′ for most of the stations, whereas for others, the KGE′ is smaller
than before calibration. For this scenario, the decrease is especially nota-
ble also for Missouri river (G0729) in North America, and for Uraricoera
River (G1121) in SouthAmerica in the calibration. On the other hand for
the validation period there are more stations with lower scores. This is
the case for example for the Parnaiba (G1168) and Mearim (G1177)
Rivers, where the model highly overestimates the streamflow both be-
fore and after calibration. Therefore, these results, indicate that once the
locations are selected based on the GFDS criteria for a reliable quality
signal, the performance of the streamflow simulations for scenario
Qsim3, in terms of volumetric accuracy, is more dependent on the a
priori performance of the hydrological model rather than on the geo-
graphical dependences on the quality of the GFDS signal.

4.3. Assessing the variability of the calibrated model parameters

Fig. 7 shows that the median values and spread for each of the
parameters (as described in Table 2) are similar between calibration
scenarios that used in situ streamflow time series (Qsim1 and Qsim2).
However, using GFDS signal (Qsim3) we obtained different median
and inter-quartile parameter values for the time constant for water in
the upper zone (Tuz), the groundwater percolation rate (GwPerc), and
the multiplier of the Manning's roughness maps of the channel system
(CalChanMan). The GwPerc parameter determines the amount of
water that percolates from the upper to the lower zone. In scenario
Qsim3, we found that amedian lower percolate rate was applied, there-
fore a larger amount ofwater is either stored, or added to the channel. In
line with this, for this calibration scenario, the time constant Tuz is
smaller, which means that there is an increase in volume and velocity
of inflow to the river channel. As a result, the CalChanMan parameter
that is used tofine-tune the timing of the channel routing on open chan-
nels, obtained higher values. This means that the higher the Manning's
roughness, the slower the velocity of the streamflow through the chan-
nel. Therefore, these three parameters were found to be more depen-
dent on the calibration methodologies and/or the input dataset used.

However, for the scenarios that used streamflow for calibration
(Qsim1 and Qsim2), we also calibrated the amounts of inflow to the
deeper groundwater systems (GwLoss) and losses due to evaporation,
leaching or water use (TransSub). In order to optimize the simulated
streamflow, this resulted for both scenarios in a higher median amount
of percolation from the upper to the lower zone, and also a slighter
higher median value of loss to groundwater compared with both the
uncalibrated and Qsim3 scenarios. Again, it should be noted that the
raw GFDS signal is dimensionless and does not contain information
about the quantity of streamflow unless a (linear) relation between
the satellite signal and historical in situ streamflow measurements is
established (as has been done using QGFDS in Qsim2).

We also tested the exclusion of the groundwater percolation
(GwPerc) parameter for calibration of the scenario Qsim3, and cali-
brated for the remaining Tuz, Tlz, and CalChanMan. In comparison
to the results from Qsim3 illustrated in Fig. 7, we obtained a similar
median value for Tuz, but lower median values for Tlz and
CalChanMan. This means that for this calibration method applied
to the LISFLOOD model, in order to optimize the streamflow simula-
tion, the movement of the flow from the lower zone to the river
channel is faster than previously, but the streamflowmoves through
the channel more slowly.

5. Discussion

5.1. Assessing the use of satellite derived surface water data for calibration

In this study, the use of satellite-derived passive microwave data
from GFDS has been tested for calibration of the rainfall-runoff
LISFLOOD setup within the GloFAS flood forecasting system, in order
to enhance the skill of the simulated streamflow. As in previous studies,
use of satellite-derived data does not aim at replacing in situ measure-
ments for model calibration, but rather to use them as an alternative
for ungauged locations. Another possibility, as demonstrated here, is
to use the satellite data as an extension of historical time series at loca-
tions where the gauges are no longer active, or for periods when in situ
data are not available. The results of our study correspondwith other re-
search carried out in the area of calibrating hydrological or hydraulic
models using satellite-derived data, such as inundation extent, river
width, and water levels from several satellite platforms (see Table 1).
In these studies, the usefulness of satellite-derived information to



Fig. 1. Gauging stations used for testing the value of the GFDS signal for hydrological model calibration including their associated catchments in (a) North America, (b) Europe, (c) South
America, and (d) Africa. Shaded polygons represent the drainage areas at the outlets of the studied river basins.
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increase the performance and reliability of the models was highlighted.
Some of these studies focus on the model calibration for specific flood
events, others (like this study) focus on longer periods, greater than
10 years (e.g. Domeneghetti et al., 2014; Getirana, 2010; Getirana
et al., 2013; Milzow et al., 2011). However, these studies use, for exam-
ple, altimetric data from ERS and/or ENVISAT missions, with an image
acquisition frequency of 35 days, while the data used in our study are
obtained from several passive microwave sensors in the GFDS system,
which have a daily visit frequency. Furthermore, this study is the first
Fig. 2. a) Overview of the GloFAS setup. The blue-contoured polygon indicates the input an
b) Schematic of the LISFLOOD model used in this study (adapted from Burek et al., 2013). LISF
arrows in panel b) represent water fluxes. The parameter names are explained in Table 2.
to test the use of surface water changes data from GFDS for calibration
of the LISFLOOD-GloFAS model setup.

5.2. Outlying the overall benefits and limitations of using GFDS satellite-
derived data for calibration

The results have shown the overall benefits of using rawGFDS data for
calibration in (virtually) ungauged basins. Therefore, even though the
gain in the calibration when using raw satellite data can be limited,
d output datasets and model used within this study (adapted from Alfieri et al., 2013);
LOOD uses the surface and sub-surface runoff outputs from HTESSEL as input. Light blue



Fig. 3. Results of LISFLOOD calibration using GFDS signal for the Qsim3 optimization (r) method for the Obidos-Linigrafo station (Amazonas River, Brazil). Skill scores show the results of
comparing themodel simulations (calibrated and uncalibrated)with the in situ observed streamflow. In the time series panel, the dashed linemarks the end of the validation period, and
beginning of the calibration period.
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mainly to the timing of the peaks, it is nonetheless an attractive option for
calibration due to its complete independence from in situ measurements
and, consequently, its suitability for completely ungauged catchments.
Furthermore, the gain in the correlation using the GFDS signal is in line
with the amount of improvement in that same metric by using Qground,
dataset which marks, within the presented calibration framework, the
limits of how well the simulated streamflow can be calibrated at those
locations.

It is expected that the application of this calibration concept to a
global flood forecasting system such as GloFAS, should also improve
the forecast performance. However, quantifying the improvement in
forecast skill is beyond the scope of this study. Furthermore, the re-
sults also show that for a global hydrologic model calibration, the
use of all three types of data – namely in situ streamflow, GFDS-
derived streamflow, and raw GFDS signal – would be likely to result
in the best possible calibrated model setup. Nevertheless, use of the
GFDS signal as a proxy for measured streamflow is not possible for
every site with an in situ gauge (Revilla-Romero et al., 2014), due
to the influence on the satellite signal of local factors such as river ge-
ometry, the amount of average daily streamflow, and the floodplain
dimension. Therefore, one limitation of an approach using all three
datasets is confidence in the quality or signal/noise ratio of the
GFDS satellite signal at locations where its validation is challenging
due to the lack of in situ observations. Furthermore, uncertainties
in both the raw GFDS signal to capture surface water changes and
GFDS-derived streamflow to reproduce in situ streamflow, have not
yet been quantified.
5.3. Future research direction

An additional potential value of using the GFDS signal within
a hydrological model would be to include the signal at specific
sites for post-processing (Bogner & Kalas, 2008) through data assim-
ilation and error correction of the streamflow forecast for the GloFAS
model, or spatial data assimilation analogous to the use of remotely
sensed soil moisture in the LISFLOOD model (Revilla-Romero et al.,
in preparation; Wanders, Karssenberg, de Roo, de Jong, & Bierkens,
2014), thereby providing more reliable information of the model
simulations.

Furthermore, we acknowledge that a calibration scheme where
the input fluxes remain equal for the surface and sub-surface runoff
fractions has some limitations. Therefore, including this element
will also be considered for calibration of the full global hydrological
model. This could be done either by calibrating the HTESSEL
land surface model, or by using the full LISFLOOD global setup to
test the calibration. It is also planned to use this full version of
LISFLOOD for a multi-model framework setup of GloFAS. Once the
full calibration of the model is carried out, the optimal set of param-
eters defined for each catchment, will be applied within the pre-
operational GloFAS flood forecasting system. However, further re-
search is required on the effect of setting a single parameter value
for large catchments, and how to increase the parameter variability
within a single catchment.

6. Conclusion

This study has evaluated the potential of remotely-sensed estimates
of surfacewater extent, from theGlobal FloodDetection System (GFDS),
to improve hydro-meteorological model simulations of the LISFLOOD
model for large-scale catchments. Main conclusions of the study,
based on the 30 sites located in Africa, Europe, North America, and
South America, and the different calibration scenarios, are summarized
as follows:

1) Using satellite-derived surfacewater extent as a proxy for streamflow
(scenario Qsim3) for calibration generally leads to more a skilled
streamflow simulation than the uncalibrated streamflow simulation,
based on a comparison of the simulated time series with the in situ
streamflow data. The calibration framework used linear correlation



Fig. 4.Boxplots of the (a) correlation coefficient (r), (b) Kling-Gupta Efficiency (KGE′), and (c) Nash–Sutcliffe (NSE) for each of the simulations (Qsim0-Qsim4), obtained for the calibration
and validation periods versus in situ observation time series.

Fig. 5. Summary of the gains for each scenario (Qsim1, Qsim2, and Qsim3) compared with Qsim0, and between the calibrated scenarios with streamflow time series (Qsim1 and Qsim2).
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Fig. 6. Spatial distribution of the gain or loss of the Kling–Gupta Efficiency (KGE′) coefficient obtained by each of the simulation scenarios calibrated with satellite-derived information
(Qsim2 and Qsim3) in comparison with the uncalibrated scenario (Qsim0), a) during calibration and, b) validation periods. Skill scores are obtained by comparing each simulated
streamflow set with in situ observed streamflow.
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(r) for optimisation, due to the dimensionless of the rawGFDS signal.
However, the independence of GFDS from in situ measurement is a
key strength of this dataset, in terms of its application for completely
ungauged catchments.
Fig. 7. The six calibrated parameters distribution for the three calibration scenarios. Refer to Ta
ibrated run (Qsim0) are markedwith the dashed line, except for the TransSub parameter, wher
TransSub were not calibrated for Qsim3 scenario.
2) Using observed streamflow gauge data to calibrate the model pro-
duced marginally better results than using satellite-derived
streamflow estimated data. This is especially relevant for the KGE
metric, which, also takes into account flow variability and bias,
ble 3 for the description of the scenarios. The default parameter values used for the uncal-
e an input global mapwas used for the uncalibrated run with values [0–0.45]. GwLoss and
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compared with linear correlation. However, at multiple sites, we
needed to use shorter potential evaluation periods due to the lack
of (recent) in situ data, whereas satellite-derived data are available
almost continuously on a daily basis since 1998 or 2002 (depending
of the latitudes) until present.

3) The continuous availability of the Global Flood Detection System
data is a key strength, in terms of their use as a proxy for streamflow,
and this is especially useful for large scale hydrological models
where the data can be used to extend of historical observations
from a discontinued gauge, or for periods when in situ data are not
available.
Table A1
List of study stations. *Station location adapted to be located on the river network (center of th

ID Station Name River Name Country

G0123 Pilot Station, AK Yukon River US
G0292 Neu-Darchau Elbe River DE
G0297 Wittenberge Elbe River DE
G0313 Tangermuende Elbe River DE
G0329 Barby Elbe River DE
G0729 Rulo, NE Missouri River US
G0758 Verona, CA Sacramento River US
G0777 Chester, IL Mississippi River US
G0785 Thebes, IL Mississippi river US
G1083 Lokoja Niger NG
G1090 Bonou Oueme BJ
G1121 Fazenda Passarao Rio Uraricoera BR
G1129 Caracarai Rio Branco BR
G1156 Obidos-Linigrafo Amazonas BR
G1160 Badajos Rio Capim BR
G1165 Manacapuru Amazonas BR
G1168 Luzilandia Rio Parnaiba BR
G1171 Pindare-Mirim Rio Pindare BR
G1177 Bacabal Rio Mearim BR
G1197 Peixe Gordo Rio Jaguaribe BR
G1198 Maraba Tocantins BR
G1214 Canutama Rio Purus BR
G1227 Labrea Rio Purus BR
G1237 Seringal Fortaleza Rio Purus BR
G1246 Valparaiso-Montante Rio Purus BR
G1286 Morpara Sao Francisco BR
G1309 Pedras Negras Rio Guapore BR
G1311 Luiz Alves Araguaia BR
G1313 Bom Jesus Da Lapa Sao Francisco BR
G1361 Senanga (60,370,001) Zambezi ZM
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Appendix A
e 0.1° cell).

Continent Drainage area provided Lat* Lon*

North America 831,390 61.85 −162.85
Europe 131,950 53.25 10.85
Europe 123,532 52.95 11.85
Europe 97,780 52.55 11.95
Europe 94,060 52.05 11.75
North America 1,084,845 40.05 −95.35
North America 55,040.1 38.75 −121.65
North America 1,835,274 37.95 −89.95
North America 1,847,188 37.35 −89.45
Africa - 7.85 6.75
Africa 46,990 6.95 2.45
South America 50,985 3.25 −60.55
South America 124,980 1.85 −61.05
South America 4,680,000 −1.95 −55.55
South America 38,178 −2.55 −47.75
South America 2,147,736 −3.35 −60.65
South America 322,823 −3.45 −42.25
South America 34,030 −3.65 −45.45
South America 27,650 −4.25 −44.75
South America 48,200 −5.25 −38.15
South America 690,920 −5.35 −49.05
South America 230,012 −6.55 −64.45
South America 226,351 −7.25 −64.75
South America 153,016 −7.75 −66.95
South America 103,285 −8.65 −67.35
South America 345,000 −11.55 −43.25
South America 110,000 −12.85 −62.95
South America 117,580 −13.25 −50.55
South America 271,000 −13.25 −43.45
Africa 284,538 −16.05 23.25
Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.rse.2015.10.022.
References

Adler, R.F., Huffman, G.J., Chang, A., Ferraro, R., Xie, P. -P., Janowiak, J., ... Nelkin, E. (2003).
The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation
analysis (1979–present). Journal of Hydrometeorology, 4, 1147–1167. http://dx.doi.
org/10.1175/1525-7541(2003)004b1147:TVGPCPN2.0.CO;2.

Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., & Pappenberger, F.
(2013). GloFAS — Global ensemble streamflow forecasting and flood early warning.
Hydrology and Earth System Sciences, 17, 1161–1175. http://dx.doi.org/10.5194/hess-
17-1161-2013.

Alfieri, L., Burek, P., Feyen, L., & Forzieri, G. (2015). Global warming increases the frequen-
cy of river floods in Europe. Hydrology and Earth System Sciences, 19, 2247–2260.
http://dx.doi.org/10.5194/hess-19-2247-2015.
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Cloke, H., Dee, D., ... Vitart, F. (2013).
ERA-interim/land: A global land water resources dataset. Hydrology and Earth
System Sciences Discussions, 10, 14705–14745. http://dx.doi.org/10.5194/hessd-10-
14705-2013.

Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi, M., & Betts, A.K.
(2009). A revised hydrology for the ECMWF model: Verification from field site to ter-
restrial water storage and impact in the integrated forecast system. Journal of
Hydrometeorology, 10, 623–643. http://dx.doi.org/10.1175/2008JHM1068.1.

Bates, P.D., & De Roo, A.P.J. (2000). A simple raster-based model for flood inundation sim-
ulation. Journal of Hydrology, 236, 54–77. http://dx.doi.org/10.1016/S0022-
1694(00)00278-X.

Beck, H.E., De Jeu, R.A.M., Schellekens, J., Van Dijk, A.I.J.M., & Bruijnzeel, L.A. (2009). Im-
proving curve number based storm runoff estimates using soil moisture proxies.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2,
250–259. http://dx.doi.org/10.1109/JSTARS.2009.2031227.

Bergeron, J., Royer, A., Turcotte, R., & Roy, A. (2014). Snow cover estimation using blended
MODIS and AMSR-E data for improvedwatershed-scale spring streamflow simulation
in Quebec. Hydrological Processes, 28, 4626–4639. http://dx.doi.org/10.1002/hyp.
10123.

Beven, K.J., & Kirkby, M.J. (1979). A physically based, variable contributing area model of
basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie

http://dx.doi.org/10.1016/j.rse.2015.10.022
http://dx.doi.org/10.1016/j.rse.2015.10.022
http://dx.doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
http://dx.doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
http://dx.doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
http://dx.doi.org/10.5194/hess-17-1161-2013
http://dx.doi.org/10.5194/hess-17-1161-2013
http://dx.doi.org/10.5194/hess-19-2247-2015
http://dx.doi.org/10.5194/hessd-10-14705-2013
http://dx.doi.org/10.5194/hessd-10-14705-2013
http://dx.doi.org/10.1175/2008JHM1068.1
http://dx.doi.org/10.1016/S0022-1694(00)00278-X
http://dx.doi.org/10.1016/S0022-1694(00)00278-X
http://dx.doi.org/10.1109/JSTARS.2009.2031227
http://dx.doi.org/10.1002/hyp.10123
http://dx.doi.org/10.1002/hyp.10123


130 B. Revilla-Romero et al. / Remote Sensing of Environment 171 (2015) 118–131
du bassin versant. Hydrological Sciences Bulletin, 24, 43–69. http://dx.doi.org/10.1080/
02626667909491834.

Bogner, K., & Kalas, M. (2008). Error-correction methods and evaluation of an ensemble
based hydrological forecasting system for the upper Danube catchment.
Atmospheric Science Letters, 9, 95–102. http://dx.doi.org/10.1002/asl.180.

Bontemps, S., Defourny, P., Van Bogaert, E., Arino, O., Kalogirou, V., & Perez, J.R. (2010).
GLOBCOVER 2009 — Products description and validation report.

Brakenridge, G.R., Nghiem, S.V., Anderson, E., & Chien, S. (2005). Space-based measure-
ment of river runoff. EOS. Transactions of the American Geophysical Union, 86,
185–188. http://dx.doi.org/10.1029/2005EO190001.

Brakenridge, G.R., Nghiem, S.V., Anderson, E., & Mic, R. (2007). Orbital microwave mea-
surement of river discharge and ice status. Water Resources Research, 43. http://dx.
doi.org/10.1029/2006WR005238 (n/a–n/a).

Brakenridge, R.G., Cohen, S., Kettner, A.J., De Groeve, T., Nghiem, S.V., Syvitski, J.P.M., &
Fekete, B.M. (2012). Calibration of satellite measurements of river discharge using a
global hydrology model. Journal of Hydrology, 475, 123–136. http://dx.doi.org/10.
1016/j.jhydrol.2012.09.035.

Burek, P., van der Knijff, J., & de Roo, A. (2013). LISFLOOD — distributed water balance and
flood simulation model — Revised user manualhttp://dx.doi.org/10.2788/24719.

Chukhlantsev, A. (2006). Microwave radiometry of vegetation canopies. Dordrecht: Kluwer
Academic Publishers.

De Roo, A., Odijk, M., Schmuck, G., Koster, E., & Lucieer, A. (2001). Assessing the effects of
land use changes on floods in the Meuse and Oder catchment. Physics and Chemistry
of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26, 593–599. http://dx.doi.org/
10.1016/S1464-1909(01)00054-5.

De Roo, A., Schmuck, G., Perdigao, V., & Thielen, J. (2003). The influence of historic land
use changes and future planned land use scenarios on floods in the Oder catchment.
Recent Development in River Basin Research and Management. Phys. Chem. Earth Parts
ABC, 28. (pp. 1291–1300). http://dx.doi.org/10.1016/j.pce.2003.09.005.

Di Baldassarre, G., & Montanari, A. (2009). Uncertainty in river discharge observations: A
quantitative analysis. Hydrology and Earth System Sciences, 13, 913–921. http://dx.doi.
org/10.5194/hess-13-913-2009.

Di Baldassarre, G., Schumann, G., & Bates, P.D. (2009). A technique for the calibration of
hydraulic models using uncertain satellite observations of flood extent. Journal of
Hydrology, 367, 276–282. http://dx.doi.org/10.1016/j.jhydrol.2009.01.020.

Dietz, A.J., Kuenzer, C., Gessner, U., & Dech, S. (2012). Remote sensing of snow —A review
of available methods. International Journal of Remote Sensing, 33, 4094–4134. http://
dx.doi.org/10.1080/01431161.2011.640964.

van Dijk, A.I.J.M., & Renzullo, L.J. (2011). Water resource monitoring systems and the role
of satellite observations. Hydrology and Earth System Sciences, 15, 39–55. http://dx.doi.
org/10.5194/hess-15-39-2011.

Domeneghetti, A., Tarpanelli, A., Brocca, L., Barbetta, S., Moramarco, T., Castellarin, A., &
Brath, A. (2014). The use of remote sensing-derived water surface data for hydraulic
model calibration. Remote Sensing of Environment, 149, 130–141. http://dx.doi.org/10.
1016/j.rse.2014.04.007.

Donohue, R.J., Roderick, M.L., & McVicar, T.R. (2007). On the importance of including veg-
etation dynamics in Budyko's hydrological model. Hydrology and Earth System
Sciences, 11, 983–995.

Duan, Q., Sorooshian, S., & Gupta, V. (1992). Effective and efficient global optimization for
conceptual rainfall-runoff models. Water Resources Research, 28, 1015–1031. http://
dx.doi.org/10.1029/91WR02985.

Fekete, B.M., Vörösmarty, C.J., & Grabs, W. (2002). High-resolution fields of global
runoff combining observed river discharge and simulated water balances.
Global Biogeochemical Cycles, 16, 15-1–15-10. http://dx.doi.org/10.1029/
1999GB001254.

Feyen, L., Vrugt, J.A., Nualláin, B.Ó., van der Knijff, J., & De Roo, A. (2007). Parameter opti-
misation and uncertainty assessment for large-scale streamflow simulation with the
LISFLOOD model. Journal of Hydrology, 332, 276–289. http://dx.doi.org/10.1016/j.
jhydrol.2006.07.004.

Fluet-Chouinard, E., Lehner, B., Rebelo, L. -M., Papa, F., & Hamilton, S.K. (2015). Develop-
ment of a global inundation map at high spatial resolution from topographic down-
scaling of coarse-scale remote sensing data. Remote Sensing of Environment, 158,
348–361. http://dx.doi.org/10.1016/j.rse.2014.10.015.

Fortin, F. -A., De Rainville, F. -M., Gardner, M. -A., Parizeau, M., & Gagńe, C. (2012). DEAP:
Evolutionary algorithms made easy. Journal of Machine Learning Research, 13,
2171–2175.

Forzieri, G., Feyen, L., Rojas, R., Flörke, M., Wimmer, F., & Bianchi, A. (2014). Ensemble pro-
jections of future streamflow droughts in Europe. Hydrology and Earth System
Sciences, 18, 85–108. http://dx.doi.org/10.5194/hess-18-85-2014.

Getirana, A.C.V. (2010). Integrating spatial altimetry data into the automatic calibration of
hydrological models. Journal of Hydrology, 387, 244–255. http://dx.doi.org/10.1016/j.
jhydrol.2010.04.013.

Getirana, A.C.V., Boone, A., Yamazaki, D., & Mognard, N. (2013). Automatic parameterization
of a flow routing scheme driven by radar altimetry data: Evaluation in the Amazon
Basin. Water Resources Research, 49, 614–629. http://dx.doi.org/10.1002/wrcr.20077.

Global Runoff Data Centre (GRDC) (2010). The river discharge time series, Koblenz,
Germany. Federal Institute of Hydrology (BfG) ([WWW Document]. URL http://
grdc.bafg.de/(accessed 1.20.14)).

Hannah, D.M., Demuth, S., van Lanen, H.A.J., Looser, U., Prudhomme, C., Rees, G., ...
Tallaksen, L.M. (2011). Large-scale river flow archives: Importance, current status
and future needs. Hydrological Processes, 25, 1191–1200. http://dx.doi.org/10.1002/
hyp.7794.

Hirpa, F.A., Gebremichael, M., Hopson, T.M., Wojick, R., & Lee, H. (2014). Assimilation of
satellite soil moisture retrievals into a hydrologic model for improving river dis-
charge. In V. Lakshmi, D. Alsdorf, r. Anderson, S. Biancamaria, M. Cosh, J. Antin, G.
Huffman, W. kustas, P. van oevelen, T. painter, J. parajka, rR. tthew, & C. Rüdiger
(Eds.), Remote sensing of the terrestrial water cycle (pp. 319–329). John Wiley &
Sons, Inc.

Hirpa, F.A., Salamon, P., Alfieri, L., Thielen, J., Zsoter, E., & Pappenberger, F. (2015). The ef-
fect of reference climatology on global flood forecasting. Journal of Hydrometeorology
(submitted for publication).

Hostache, R., Matgen, P., Schumann, G., Puech, C., Hoffmann, L., & Pfister, L. (2009). Water
level estimation and reduction of hydraulic model calibration uncertainties using sat-
ellite SAR images of floods. IEEE Transactions on Geoscience and Remote Sensing, 47,
431–441. http://dx.doi.org/10.1109/TGRS.2008.2008718.

Huffman, G.J., Adler, R.F., Bolvin, D.T., & Gu, G. (2009). Improving the global precipitation
record: GPCP version 2.1. Geophysical Research Letters, 36, L17808. http://dx.doi.org/
10.1029/2009GL040000.

Jiang, D., Wang, J., Huang, Y., Zhou, K., Ding, X., & Fu, J. (2014). The review of GRACE data
applications in terrestrial hydrologymonitoring. Advances inMeteorology, 2014http://
dx.doi.org/10.1155/2014/725131.

Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube basin
under an ensemble of climate change scenarios. Journal of Hydrology, 424–425,
264–277. http://dx.doi.org/10.1016/j.jhydrol.2012.01.011.

Kugler, Z., & De Groeve, T. (2007). The global flood detection system. Luxembourg: Office
for Official Publications of the European Communities.

Lehner, B., & Döll, P. (2004). Development and validation of a global database of lakes, res-
ervoirs and wetlands. Journal of Hydrology, 296, 1–22. http://dx.doi.org/10.1016/j.
jhydrol.2004.03.028.

Lehner, B., Verdin, K., & Jarvis, A. (2008). New global hydrography derived from
spaceborne elevation data. EOS. Transactions of the American Geophysical Union, 89,
93–94. http://dx.doi.org/10.1029/2008EO100001.

Maier, H.R., Kapelan, Z., Kasprzyk, J., Kollat, J., Matott, L.S., Cunha, M.C., ... Reed, P.M.
(2014). Evolutionary algorithms and other metaheuristics in water resources: Cur-
rent status, research challenges and future directions. Environmental Modelling and
Software, 62, 271–299. http://dx.doi.org/10.1016/j.envsoft.2014.09.013.

Marthews, T.R., Dadson, S.J., Lehner, B., Abele, S., & Gedney, N. (2015). High-resolution
global topographic index values for use in large-scale hydrological modelling.
Hydrology and Earth System Sciences, 19, 91–104. http://dx.doi.org/10.5194/hess-19-
91-2015.

Mason, D.C., Bates, P.D., & Dall' Amico, J.T. (2009). Calibration of uncertain flood inunda-
tion models using remotely sensed water levels. Journal of Hydrology, 368, 224–236.
http://dx.doi.org/10.1016/j.jhydrol.2009.02.034.

Milzow, C., Krogh, P.E., & Bauer-Gottwein, P. (2011). Combining satellite radar altimetry,
surface soil moisture and GRACE total storage changes for hydrological model calibra-
tion in a large poorly gauged catchment. Hydrology and Earth System Sciences, 15,
1729–1743. http://dx.doi.org/10.5194/hess-15-1729-2011.

Minville, M., Cartier, D., Guay, C., Leclaire, L. -A., Audet, C., Le Digabel, S., & Merleau, J.
(2014). Improving process representation in conceptual hydrological model calibra-
tion using climate simulations. Water Resources Research, 50, 5044–5073. http://dx.
doi.org/10.1002/2013WR013857.

Montanari, M., Hostache, R., Matgen, P., Schumann, G., Pfister, L., & Hoffmann, L. (2009).
Calibration and sequential updating of a coupled hydrologic–hydraulic model using
remote sensing-derived water stages. Hydrology and Earth System Sciences, 13,
367–380. http://dx.doi.org/10.5194/hess-13-367-2009.

Müller Schmied, H., Eisner, S., Franz, D., Wattenbach, M., Portmann, F.T., Flörke, M., & Döll,
P. (2014). Sensitivity of simulated global-scale freshwater fluxes and storages to
input data, hydrological model structure, human water use and calibration.
Hydrology and Earth System Sciences, 18, 3511–3538. http://dx.doi.org/10.5194/
hess-18-3511-2014.

Nash, J.E., & Sutcliffe, J.V. (1970). River flow forecasting through conceptual models part
I — A discussion of principles. Journal of Hydrology, 10, 282–290. http://dx.doi.org/
10.1016/0022-1694(70)90255-6.

Nicklow, J., Reed, P., Savic, D., Harrell, L., Chan-Hilton, A., Karamouz, M., ... ASCE Task
Committee on Evolutionary Computation in Environmental and Water Resources
Engineering (2010). State of the art for genetic algorithms and beyond in water re-
sources planning and management. Journal of Water Resources Planning and
Management, 136, 412–432. http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.
0000053.

Pappenberger, F., Matgen, P., Beven, K.J., Henry, J. -B., Pfister, L., & Fraipont, P. (2006). In-
fluence of uncertain boundary conditions and model structure on flood inundation
predictions. Advances in Water Resources, 29, 1430–1449. http://dx.doi.org/10.1016/
j.advwatres.2005.11.012.

Pappenberger, F., Thielen, J., & Del Medico, M. (2011). The impact of weather forecast im-
provements on large scale hydrology: Analysing a decade of forecasts of the
European flood alert system. Hydrological Processes, 25, 1091–1113. http://dx.doi.
org/10.1002/hyp.7772.

Prigent, C., Papa, F., Aires, F., Jimenez, C., Rossow, W.B., & Matthews, E. (2012).
Changes in land surface water dynamics since the 1990s and relation to popula-
tion pressure. Geophysical Research Letters, 39, L08403http://dx.doi.org/10.1029/
2012GL051276.

Ramillien, G., Famiglietti, J.S., & Wahr, J. (2008). Detection of continental hydrology and
glaciology signals from GRACE: A review. Surveys in Geophysics, 29, 361–374. http://
dx.doi.org/10.1007/s10712-008-9048-9.

Rao, C.X., & Maurer, E.P. (1996). A simplified model for predicting daily transmis-
sion losses in a stream Channel1. JAWRA Journal of the American Water Re-
sources Association, 32, 1139–1146. http://dx.doi.org/10.1111/j.1752-1688.
1996.tb03484.x.

Refsgaard, J.C., & Storm, B. (1990). Construction, calibration and validation of hy-
drological models. In M.B. Abbott, & J.C. Refsgaard (Eds.), Distributed hydrologi-
cal modelling. Water Science and Technology Library. (pp. 41–54). Springer
Netherlands.

http://dx.doi.org/10.1080/02626667909491834
http://dx.doi.org/10.1080/02626667909491834
http://dx.doi.org/10.1002/asl.180
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0060
http://dx.doi.org/10.1029/2005EO190001
http://dx.doi.org/10.1029/2006WR005238
http://dx.doi.org/10.1016/j.jhydrol.2012.09.035
http://dx.doi.org/10.1016/j.jhydrol.2012.09.035
http://dx.doi.org/10.2788/24719
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0085
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0085
http://dx.doi.org/10.1016/S1464-1909(01)00054-5
http://dx.doi.org/10.1016/j.pce.2003.09.005
http://dx.doi.org/10.5194/hess-13-913-2009
http://dx.doi.org/10.1016/j.jhydrol.2009.01.020
http://dx.doi.org/10.1080/01431161.2011.640964
http://dx.doi.org/10.5194/hess-15-39-2011
http://dx.doi.org/10.1016/j.rse.2014.04.007
http://dx.doi.org/10.1016/j.rse.2014.04.007
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0125
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0125
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0125
http://dx.doi.org/10.1029/91WR02985
http://dx.doi.org/10.1029/1999GB001254
http://dx.doi.org/10.1029/1999GB001254
http://dx.doi.org/10.1016/j.jhydrol.2006.07.004
http://dx.doi.org/10.1016/j.jhydrol.2006.07.004
http://dx.doi.org/10.1016/j.rse.2014.10.015
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0155
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0155
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0155
http://dx.doi.org/10.5194/hess-18-85-2014
http://dx.doi.org/10.1016/j.jhydrol.2010.04.013
http://dx.doi.org/10.1016/j.jhydrol.2010.04.013
http://dx.doi.org/10.1002/wrcr.20077
http://grdc.bafg.de
http://grdc.bafg.de
http://dx.doi.org/10.1002/hyp.7794
http://dx.doi.org/10.1002/hyp.7794
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0185
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0185
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0185
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0185
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0185
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0185
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0190
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0190
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0190
http://dx.doi.org/10.1109/TGRS.2008.2008718
http://dx.doi.org/10.1029/2009GL040000
http://dx.doi.org/10.1155/2014/725131
http://dx.doi.org/10.1016/j.jhydrol.2012.01.011
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0215
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0215
http://dx.doi.org/10.1016/j.jhydrol.2004.03.028
http://dx.doi.org/10.1016/j.jhydrol.2004.03.028
http://dx.doi.org/10.1029/2008EO100001
http://dx.doi.org/10.1016/j.envsoft.2014.09.013
http://dx.doi.org/10.5194/hess-19-91-2015
http://dx.doi.org/10.5194/hess-19-91-2015
http://dx.doi.org/10.1016/j.jhydrol.2009.02.034
http://dx.doi.org/10.5194/hess-15-1729-2011
http://dx.doi.org/10.1002/2013WR013857
http://dx.doi.org/10.5194/hess-13-367-2009
http://dx.doi.org/10.5194/hess-18-3511-2014
http://dx.doi.org/10.5194/hess-18-3511-2014
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000053
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000053
http://dx.doi.org/10.1016/j.advwatres.2005.11.012
http://dx.doi.org/10.1016/j.advwatres.2005.11.012
http://dx.doi.org/10.1002/hyp.7772
http://dx.doi.org/10.1029/2012GL051276
http://dx.doi.org/10.1029/2012GL051276
http://dx.doi.org/10.1007/s10712-008-9048-9
http://dx.doi.org/10.1111/j.1752-1688.1996.tb03484.x
http://dx.doi.org/10.1111/j.1752-1688.1996.tb03484.x
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0310
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0310
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0310
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0310


131B. Revilla-Romero et al. / Remote Sensing of Environment 171 (2015) 118–131
Revilla -Romero, B., Wanders, N., Burek, P., Salamon, P., De Roo, A., & Thielen, J. (2015). In-
tegrating remotely sensed surface water extent and a large-scale hydrological model
through data assimilation. (in preparation).

Revilla-Romero, B., Thielen, J., Salamon, P., De Groeve, T., & Brakenridge, G.R. (2014). Eval-
uation of the satellite-based global flood detection system for measuring river dis-
charge: Influence of local factors. Hydrology and Earth System Sciences, 18,
4467–4484. http://dx.doi.org/10.5194/hess-18-4467-2014.

Rodrigo Rojas, L.F. (2013). Climate change and river floods in the European Union: Socio-
economic consequences and the costs and benefits of adaptation. Global
Environmental Change, 23http://dx.doi.org/10.1016/j.gloenvcha.2013.08.006.

Sivapalan, M. (2003). Prediction in ungauged basins: A grand challenge for theoretical hy-
drology. Hydrological Processes.

Sun, W., Ishidaira, H., & Bastola, S. (2010). Towards improving river discharge estimation
in ungauged basins: Calibration of rainfall-runoff models based on satellite observa-
tions of river flow width at basin outlet. Hydrology and Earth System Sciences, 14,
2011–2022. http://dx.doi.org/10.5194/hess-14-2011-2010.

Sun, W., Ishidaira, H., & Bastola, S. (2012a). Calibration of hydrological models in
ungauged basins based on satellite radar altimetry observations of river water level.
Hydrological Processes, 26, 3524–3537. http://dx.doi.org/10.1002/hyp.8429.

Sun, W., Ishidaira, H., & Bastola, S. (2012b). Prospects for calibrating rainfall-runoff
models using satellite observations of river hydraulic variables as surrogates for in
situ river discharge measurements. Hydrological Processes, 26, 872–882. http://dx.
doi.org/10.1002/hyp.8301.

Tarpanelli, A., Brocca, L., Melone, F., & Moramarco, T. (2013). Hydraulic modelling calibra-
tion in small rivers by using coarse resolution synthetic aperture radar imagery.
Hydrological Processes, 27, 1321–1330. http://dx.doi.org/10.1002/hyp.9550.

Thielen, J., Bartholmes, J., Ramos, M. -H., & de Roo, A. (2009). The European flood alert sys-
tem — Part 1: Concept and development. Hydrology and Earth System Sciences, 13,
125–140. http://dx.doi.org/10.5194/hess-13-125-2009.

Thiemig, V., Bisselink, B., Pappenberger, F., & Thielen, J. (2014). A pan-African flood fore-
casting system. Hydrology and Earth System Sciences Discussions, 11, 5559–5597.
http://dx.doi.org/10.5194/hessd-11-5559-2014.

Thiemig, V., Bisselink, B., Pappenberger, F., & Thielen, J. (2015). A pan-African medium-
range ensemble flood forecast system. Hydrology and Earth System Sciences, 19,
3365–3385. http://dx.doi.org/10.5194/hess-19-3365-2015.

Van Der Knijff, J.M., Younis, J., & De Roo, A.P.J. (2010). LISFLOOD: A GIS-based distributed
model for river basin scale water balance and flood simulation. International Journal
of Geographical Information Science, 24, 189–212. http://dx.doi.org/10.1080/
13658810802549154.
Wanders, N., Bierkens, M.F.P., de Jong, S.M., de Roo, A., & Karssenberg, D. (2014a). The
benefits of using remotely sensed soil moisture in parameter identification of large-
scale hydrological models. Water Resources Research, 50, 6874–6891. http://dx.doi.
org/10.1002/2013WR014639.

Wanders, N., Karssenberg, D., de Roo, A., de Jong, S.M., & Bierkens, M.F.P. (2014b). The
suitability of remotely sensed soil moisture for improving operational flood forecast-
ing. Hydrology and Earth System Sciences, 18, 2343–2357. http://dx.doi.org/10.5194/
hess-18-2343-2014.

Werner, M., Blazkova, S., & Petr, J. (2005). Spatially distributed observations in
constraining inundation modelling uncertainties. Hydrological Processes, 19,
3081–3096. http://dx.doi.org/10.1002/hyp.5833.

Wilson, J.P., & Gallant, J.C. (2000). Terrain analysis: Principles and applications. John Wiley
& Sons.

Wohl, E., Barros, A., Brunsell, N., Chappell, N.A., Coe, M., Giambelluca, T., ... Ogden, F.
(2012). The hydrology of the humid tropics. Nature Climate Change, 2, 655–662.
http://dx.doi.org/10.1038/nclimate1556.

Wu, H., Kimball, J.S., Li, H., Huang, M., Leung, L.R., & Adler, R.F. (2012). A new global river
network database for macroscale hydrologic modeling. Water Resources Research, 48,
W09701. http://dx.doi.org/10.1029/2012WR012313.

Yamazaki, D., O'Loughlin, F., Trigg, M.A., Miller, Z.F., Pavelsky, T.M., & Bates, P.D. (2014).
Development of the global width database for large rivers. Water Resources
Research, 50, 3467–3480. http://dx.doi.org/10.1002/2013WR014664.

Zajac, Z., Salamon, P., Burek, P., De Roo, A., & Revilla-Romero, B. (2015). Evaluating the ef-
fects of lake and reservoir parameterization in a global river routing model on uncertain-
ty of daily river discharge. (in preparation).

Zajac, Z., Zambrano-Bigiarini, M., Salamon, P., Burek, P., Gentile, A., & Bianchi, A.
(2013). Calibration of the LISFLOOD hydrological model for Europe, Calibration
Round 2013. JRC technical report, European Commission. Italy: Joint Research Cen-
tre. Ispra.

Zhang, Y., Chiew, F.H.S., Zhang, L., & Li, H. (2009). Use of remotely sensed actual evapo-
transpiration to improve rainfall–runoff modeling in southeast Australia. Journal of
Hydrometeorology, 10, 969–980. http://dx.doi.org/10.1175/2009JHM1061.1.

Zhang, Y.Q., Vaze, J., Chiew, F.H.S., & Liu, Y. (2011). Incorporating vegetation time series to
improve rainfall-runoff model predictions in gauged and ungauged catchments.
Modelling and Simulation Society of Australian and New Zealand. Presented at the
MODSIM 2011 International Congress on Modelling and Simulation, Perth, Australia
(pp. 3455–3461).

http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0315
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0315
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0315
http://dx.doi.org/10.5194/hess-18-4467-2014
http://dx.doi.org/10.1016/j.gloenvcha.2013.08.006
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0330
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0330
http://dx.doi.org/10.5194/hess-14-2011-2010
http://dx.doi.org/10.1002/hyp.8429
http://dx.doi.org/10.1002/hyp.8301
http://dx.doi.org/10.1002/hyp.9550
http://dx.doi.org/10.5194/hess-13-125-2009
http://dx.doi.org/10.5194/hessd-11-5559-2014
http://dx.doi.org/10.5194/hess-19-3365-2015
http://dx.doi.org/10.1080/13658810802549154
http://dx.doi.org/10.1080/13658810802549154
http://dx.doi.org/10.1002/2013WR014639
http://dx.doi.org/10.5194/hess-18-2343-2014
http://dx.doi.org/10.5194/hess-18-2343-2014
http://dx.doi.org/10.1002/hyp.5833
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0390
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0390
http://dx.doi.org/10.1038/nclimate1556
http://dx.doi.org/10.1029/2012WR012313
http://dx.doi.org/10.1002/2013WR014664
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0410
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0410
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0410
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0415
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0415
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0415
http://dx.doi.org/10.1175/2009JHM1061.1
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0430
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0430
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0430
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0430
http://refhub.elsevier.com/S0034-4257(15)30174-7/rf0430

	Filling the gaps: Calibrating a rainfall-�runoff model using satellite-�derived surface water extent
	1. Introduction
	2. Data and study regions
	2.1. Satellite-derived data
	2.2. In situ streamflow data
	2.3. Reference climatology and input runoff forcing

	3. Methodology
	3.1. Selection of testing sites
	3.2. Hydrological model
	3.2.1. LISFLOOD
	3.2.2. Calibration parameters, simulation scenarios and studied period

	3.3. Calibration procedure
	3.4. Performance comparison and skill quantification

	4. Results
	4.1. Assessing the use of satellite derived surface water data for calibration
	4.2. Quantifying the gain in skill for each calibration scenario
	4.3. Assessing the variability of the calibrated model parameters

	5. Discussion
	5.1. Assessing the use of satellite derived surface water data for calibration
	5.2. Outlying the overall benefits and limitations of using GFDS satellite-derived data for calibration
	5.3. Future research direction

	6. Conclusion
	Acknowledgments
	Appendix A
	Appendix B. Supplementary data
	References


