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Abstract—Floods are among the most catastrophic natural dis-
asters around the globe impacting human lives and infrastruc-
ture. Implementation of a flood prediction system can potentially
help mitigate flood-induced hazards. Such a system typically re-
quires implementation and calibration of a hydrologic model using
in situ observations (i.e., rain and stream gauges). Recently, satel-
lite remote sensing data have emerged as a viable alternative or
supplement to in situ observations due to their availability over
vast ungauged regions. The focus of this study is to integrate the
best available satellite products within a distributed hydrologic
model to characterize the spatial extent of flooding and associated
hazards over sparsely gauged or ungauged basins. We present
a methodology based entirely on satellite remote sensing data
to set up and calibrate a hydrologic model, simulate the spatial
extent of flooding, and evaluate the probability of detecting inun-
dated areas. A raster-based distributed hydrologic model, Coupled
Routing and Excess STorage (CREST), was implemented for the
Nzoia basin, a subbasin of Lake Victoria in Africa. Moderate Res-
olution Imaging Spectroradiometer Terra-based and Advanced
Spaceborne Thermal Emission and Reflection Radiometer-based
flood inundation maps were produced over the region and used to
benchmark the distributed hydrologic model simulations of inun-
dation areas. The analysis showed the value of integrating satellite
data such as precipitation, land cover type, topography, and other
products along with space-based flood inundation extents as inputs
to the distributed hydrologic model. We conclude that the quantifi-
cation of flooding spatial extent through optical sensors can help
to calibrate and evaluate hydrologic models and, hence, potentially
improve hydrologic prediction and flood management strategies in
ungauged catchments.

Manuscript received November 1, 2009; revised April 21, 2010 and
June 14, 2010; accepted June 24, 2010. Date of publication August 30,
2010; date of current version December 27, 2010. This work was supported
by the National Aeronautics and Space Administration (NASA) Headquar-
ters under the NASA Earth and Space Science Fellowship Program through
Grant NNX08AX63H and under the NASA Applied Sciences SERVIR Africa
Project.

S. I. Khan, Y. Hong, and J. Wang are with the School of Civil Engineer-
ing and Environmental Sciences, The University of Oklahoma, Norman, OK
73019-1024 USA (e-mail: yanghong@ou.edu).

K. K. Yilmaz, R. F. Adler, F. Policelli, and S. Habib are with the NASA
Goddard Space Flight Center, Greenbelt, MD 20771 USA.

J. J. Gourley is with the NOAA National Severe Storms Laboratory, National
Weather Center, Norman, OK 73072 USA.

G. R. Brakenridge is with the Department of Geography and the Department
of Earth Sciences, Dartmouth College, Hanover, NH 03755 USA.

D. Irwin is with the NASA Marshall Space Flight Center, Huntsville, AL
35811 USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2010.2057513

Index Terms—Floods, hydrology, optical sensors, rainfall–
runoff modeling, satellite precipitation.

I. INTRODUCTION

F LOODS are among the most recurring and devastating
natural hazards, impacting human lives and causing severe

economic damage throughout the world. It is understood that
flood risks will not subside in the future, and with the onset
of climate change, flood intensity and frequency will threaten
many regions of the world [1], [2]. The current trend and
future scenarios of flood risks demand accurate spatial and
temporal information on the potential hazards and risks of
floods. Techniques utilizing satellite remote sensing data can
provide objective information that help to detect floods and
to monitor their spatiotemporal evolution [3]–[5]. For exam-
ple, orbital sensors, such as National Aeronautics and Space
Administration (NASA)’s Moderate Resolution Imaging Spec-
troradiometer (MODIS), provide reliable data to help detect
floods in regions where no other means are available for flood
monitoring [6], [7]. Such data, after certain processing, provide
information on flooding areal extents with global coverage
and frequent (sometimes daily) observations over the region of
interest. To date, satellite observations have become practical
tools for development of cost-effective methods for hydrologic
prediction in poorly gauged or even ungauged basins around
the globe, regardless of the political boundaries. It has been
demonstrated that orbital remote sensing can be used for river
inundation mapping and has the potential to remotely estimate
runoff [7], [8].

The application of satellite imagery for flood mapping began
with the use of Landsat Thematic Mapper and Multispectral
Scanner, the Satellite Pour l’Observation de la Terre [9]–[12],
the Advanced Very High Resolution Radiometer [13]–[16],
the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER), MODIS, and Landsat-7 sensors [3],
[4], [17]–[19]. For a comprehensive review on space-based
observation of flood extent and surface water level from various
satellite sensors, please refer to [4], [5], [11], and [20]–[24].

Microwave measurements from space can be used for flood
monitoring even when cloud cover is present but the spatial
resolution is relatively coarse at approximately 10 km, such
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Fig. 1. Map showing the Nzoia river basin in the Lake Victoria region, East Africa.

as with Advance Microwave Scanning Radiometer for the
Earth Observing System (AMSR-E) microwave data. Radar
imagery onboard satellites has proved invaluable in mapping
flood extent [25]–[27]. For example, flood extent maps derived
from Synthetic Aperture Radar (SAR) sensors have been used
to validate hydraulic models [28], [29]. However, limitations
of the SAR include inability to detect flooding in urban ar-
eas, inaccurate image calibration that leads to geometric and
radiometric distortions, difficulties in data processing, and more
prohibitively, low temporal resolution of the current overpasses
with a revisit time of 35 days [27]. Other sensors such as the
Advanced SAR instrument onboard ENVISAT with a spatial
resolution of (150–1000 m) and a revisit time of a few days
can be effective for flood detection [24], [27], [28]. Visible and
infrared sensors onboard the NASA MODIS Terra satellite can
detect floods with relatively high spatial (30 m with ASTER
and 250 m with MODIS) and temporal (daily if clear sky)
resolution around the globe. For the past decade, significant
efforts have been made in investigating the potential to use
flood inundation extent derived from optical sensors as a tool
to evaluate the performance of hydrologic models in sparsely
gauged or unguaged basins [6], [7].

This study presents a methodology based entirely on satellite
remote sensing data (including topography, land cover, precip-
itation, and flood inundation extent) to calibrate a hydrologic
model, simulate the spatial extent of flooding, and evaluate
the probability of detecting inundated areas. MODIS- and
ASTER-based raster flood inundation maps were derived to
benchmark the distributed hydrologic model to simulate the
spatial extent of flooding. The objective of this paper is to

investigate the utility of flood spatial extent information ob-
tained from orbital sensors to calibrate and evaluate hydrologic
models in an effort to potentially improve hydrologic predic-
tion and flood management strategies in ungauged catchments.
This paper is organized as follows. Section II describes the
study area, data, and the hydrologic model. Section III outlines
the methods for space-based flood inundation mapping and
for hydrologic model-based flood extent mapping. Section IV
provides a comparison between the two methods and validates
the model performance using MODIS-/ASTER-derived flood
inundation maps, followed by final concluding remarks in
Section V.

II. STUDY AREA AND DATA

A. Nzoia Basin

The rainy season from October to early December brings
devastating floods in Uganda, Kenya, Tanzania, and other coun-
tries in East Africa almost every year. This region, surrounding
Lake Victoria, is heavily populated with around 30 million
people (Fig. 1). During December 2006, the United Nations
Office for the Coordination of Humanitarian Affairs estimated
that 1.8 million people had been affected by the flooding in
Kenya, Ethiopia, and Somalia. Repeated flooding affects many
lives particularly in the Lake Victoria region. With an area
of 68 600 km2, Lake Victoria is the second largest freshwater
lake in the world [30]. Nzoia, a subbasin of the Lake Victoria
basin, was chosen as the study area because of its regional
importance as being susceptible to flooding and as a major
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TABLE I
SELECTED FLOOD EVENTS, LOCATION, FLOODED AREAS/RIVER (VERIFIED WITH THE DFO FLOOD INVENTORY).

NUMBERS IN PARENTHESES ARE THE JULIAN DAYS OF THE CORRESPONDING YEAR

tributary to Lake Victoria. The Nzoia River basin covers ap-
proximately 12 900 km2 with elevations ranging between 1100
and 3000 m. Annual average rain within the region is 1500 mm.
Table I lists the recent flooding events investigated in this
study.

B. Satellite Remote Sensing Data for Flood
Inundation Mapping

In this paper, we used MODIS and ASTER for flood inunda-
tion mapping. MODIS instruments onboard NASA’s Terra and
Aqua satellites offer a unique combination of quasi-global daily
coverage with acceptable spatial resolution. These capabilities
are being utilized for flood monitoring at regional and global
scales. Brakenridge et al. [3], [4] demonstrated that MODIS
data can be used to distinguish between flooded and nonflooded
areas with suitable spatial resolution. This can be very crucial
in regions where no other means of flood monitoring are
available. The NASA Goddard Space Flight Center, through
the Rapid Response System, processes and displays images
in near real time—within 2–4 h of retrieval. MODIS Rapid
Response data are available from Terra and Aqua in near real
time at http://rapidfire.sci.gsfc.nasa.gov/. This system, initially
developed for fire hazard detection and monitoring, can be
utilized for flood detection across the globe. Several spectral
bands at spatial resolutions of approximately 250 and 500 m
are appropriate for accurate discrimination of water from land.
Global coverage can be provided on a near-daily basis if sky
conditions are cloud free.

Another sensor used in this study is ASTER, an imaging in-
strument onboard Terra satellite that was launched in December
1999 as part of NASA’s Earth Observing System. ASTER is a
cooperative effort between NASA, Japan’s Ministry of Econ-
omy, Trade and Industry, and Japan’s Earth Remote Sensing
Data Analysis Center. ASTER is an advanced multispectral
imager with high spatial, spectral, and radiometric resolution.
The ASTER instrument covers a wide spectral range, from
visible to thermal infrared with 14 spectral bands. It has a
total of 14 bands in visible to near-infrared (VNIR), short-wave
infrared (SWIR), and thermal-infrared (TIR) wavelengths. The
ground resolutions of the VNIR, SWIR, and TIR images are
15, 30, and 90 m, respectively [31], [32]. Data from this sensor
can be acquired on demand from Land Processes Distributed
Active Archive Center at the U.S. Geological Survey Earth Re-
sources Observation and Science Data Center, with the standard
Hierarchical Data Format (http://LPDAAC.usgs.gov). In this
study, the strategies for computing MODIS- and ASTER-based
inundation extent are described in Section III.

C. Data for Hydrologic Model Setup and Implementation

The key remote sensing data sets enabling the implementa-
tion and testing of a distributed hydrologic model in the Nzoia
basin include the following.

1) Digital elevation data from the Shuttle Radar Topography
Mission (SRTM) [33] (http://www2.jpl.nasa.gov/srtm/)
and SRTM-derived hydrologic parameter files of
HydroSHEDS [34].
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2) Rainfall data from the Tropical Rainfall Measuring Mis-
sion (TRMM)-based Multisatellite Precipitation Analysis
3B42 Real-Time (TMPA 3B42RT) operating in near real
time [35]. The data are available on the TRMM Web site
(http://trmm.gsfc.nasa.gov) at 0.25◦ × 0.25◦ spatial and
3-h temporal scales within 50◦ north–south latitude band.

3) Soil parameters provided by the Food and Agriculture
Organization (2003) (http://www.fao.org/AG/agl/agll/
dsmw.html).

4) MODIS land classification map used for land use/cover,
with 17 classes of land cover according to the Interna-
tional Geosphere–Biosphere Program classification [36].

5) Global daily Potential Evapotranspiration data from the
Famine Early Warning Systems Network (FEWS NET:
http://earlywarning.usgs.gov/Global/index.php).

III. METHODOLOGY

The methodology consists of three major steps. First, the data
from MODIS and ASTER sensors were retrieved and processed
to derive flood inundation maps for the selected events (Table I).
Second, a grid-based distributed hydrologic model was imple-
mented and further calibrated using the satellite-derived flood
inundation maps in the study area. Finally, the performance
of hydrologic simulations in the Nzoia basin was evaluated
by comparing the simulated flood inundation extents with
those derived from MODIS and ASTER imageries. A similar
technique described below is used by the Dartmouth Flood
Observatory (http://www.dartmouth.edu/~floods/) to generate
flood maps.

A. Satellite Remote-Sensing-Based Flood
Inundation Mapping

There are several methods for identifying flooded versus
nonflooded areas using optical remote sensing imagery (e.g.,
[11] and [37]). The first step is to identify spectral classes within
the imagery. One of the widely used clustering algorithms
for this task is the Iterative Self-Organizing Data Analysis
Technique Algorithm (ISODATA), which uses the Euclidean
distance in the feature space to assign every pixel to a cluster
through a number of iterations [37]. ISODATA begins with
either arbitrary cluster means or means of an existing signature
set, and each time the clustering repeats, the means of these
clusters are shifted. The new cluster means are used for the next
iteration. To perform ISODATA, the analyst selects the num-
ber of spectral classes, a convergence threshold, and number
of iterations for the algorithm, which introduces considerable
subjectivity into the classification process [38]. This process of
floodwater classification was performed using ENVI software.
The method for flood detection and mapping using satellite
imagery included the following steps.

1) Terra MODIS near-real-time subsets covering the region
of Lake Victoria were retrieved from the NASA Web site
http://rapidfire.sci.gsfc.nasa.gov/subsets.

2) Color composite images were downloaded for im-
age processing. The false-color composite of MODIS
bands 1, 2, and 7 (red, near-infrared, and SWIR) has a

resolution of 250 m. The true-color composite of MODIS
bands 1, 3, and 4 was used for visual interpretation.

3) False-color composite images were subset to the region
of interest, and ISODATA classification was performed
(20 classes and three iterations).

4) All the water classes were combined into one water class.
5) The raster-type images were exported in Geographical

Information System (GIS)-compatible format for further
processing.

6) The images obtained in step 5) were overlaid on the
true-color image to remove the cloud contamination and
shadows that were falsely classified as water.

7) The final product overlaid in GIS under a reference water
layer (SRTM-based water bodies) was used to identify the
flooded areas.

B. Hydrologic Modeling

A distributed hydrologic model, Coupled Routing and
Excess STorage (CREST), developed by Wang et al. [39] was
used to generate modeled flood areal extents for comparison
with the satellite-based flood inundation maps.

1) Hydrologic Model Description and Implementation: The
distributed CREST hydrologic model is a hybrid modeling
strategy that was recently developed by The University of
Oklahoma (www.hydro.ou.edu) and the NASA SERVIR
Project Team (www.servir.net). The main CREST components
are briefly described as follows. 1) Three connected layers
within the soil profile that control the maximum storage of
infiltrating water and thus yield surface runoff generation. The
representation of within-cell variability of soil moisture storage
capacity (via a spatial probability distribution) and within-cell
routing can be employed for simulations at different spatiotem-
poral scales. 2) Cell-to-cell routing of surface water using a
kinematic wave assumption. 3) Coupling between the runoff
generation and routing components via feedback mechanisms.
This coupling allows for a realistic scalability of the hydrologic
variables, such as soil moisture, and is particularly important
for simulations at fine spatial resolution.

CREST simulates the spatiotemporal variation of water
fluxes and storages on a regular grid with the grid cell resolu-
tion being user defined. The scalability of model simulations
is accomplished through subgrid scale representation of soil
moisture variability (through spatial probability distributions)
and physical process representation. CREST can also simulate
inundation extent in an effort to obtain spatial and temporal
variations of floodwater within the domain. For more informa-
tion of the CREST model, please refer to [39].

In CREST, parameters related to topography and soil prop-
erties are directly estimated from the land surface data shown
in the framework in Fig. 2. To apply the CREST model over
the Nzoia basin at 1-km2 spatial resolution, local drainage
direction and accumulation maps were derived from the
30-arc-second resolution SRTM DEM from the HydroSHEDS
data set. The precipitation forcing data are TMPA 3B42RT
products [35]. The subscript “RT” refers to “real time,” which,
in reality, refers to a pseudo real time where data become avail-
able to the user via the Internet with a 8–16-h latency. Before
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Fig. 2. Schematic of the satellite remote-sensing- and hydrologic-modeling-based flood monitoring system.

Fig. 3. (In blue on top abscissa) Observed precipitation, (in black) observed
runoff, and (in red) simulated runoff for the Nzoia basin during the calibration
period (1985–1998).

forcing CREST with the TMPA 3B42RT rainfall, the data were
accumulated into daily amounts and linearly resampled onto the
30-arc-second resolution model grid.

2) Model Calibration and Validation: CREST was cali-
brated using the available daily discharge observations for the
period between 1998 and 2004. A one-year period (1998) was
used for warming up the model states. The model utilizes a
global optimization approach to capture the parameter inter-
actions. An autocalibration technique based on the Adaptive
Random Search (ARS) method by Brooks [40] was used to
calibrate the CREST model. The ARS method is considered
adaptive in the sense that it uses information gathered during

previous iterations to guide the parameter search in the current
step. The two most commonly used indicators to assess model
skill in matching the model-simulated streamflow with observa-
tions are the Nash–Sutcliffe Coefficient of Efficiency (NSCE)
[41] and the relative bias ratio (Bias). These two criteria are
used as objective functions for the automatic calibration. The
best skill occurs with NSCE ≈ 1 and Bias ≈ 0%

NSCE = 1 −
∑

(Qi,o − Qi,c)2
∑

(Qi,o − Qo)2
(1)

Bias =
∑

Qi,o −
∑

Qi,c∑
Qi,o

× 100% (2)

where Qi,o is the observed discharge at the ith time step, Qi,c

is the simulated discharge at the ith time step, and Qo is the
average of all the observed discharge values. The ARS search
method yielded an optimized parameter combination that had
an NSCE = 0.873 and Bias = −0.228% (Fig. 3).

3) Flood Inundation Module: The CREST flood inundation
model uses one of the model outputs, the grid-to-grid total free
water, to simulate the flood extents. A predefined total free
water depth threshold of approximately 70 mm is employed to
determine flood-inundated extents. This value is not fixed but
changes with the calibration of satellite-based flood inundation
images that are used during the autocalibration process. For
more information about CREST model inputs and outputs,
please refer to [39].
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TABLE II
2 × 2 CONTINGENCY TABLE FOR CREST-SIMULATED AND

SATELLITE-BASED FLOOD EXTENT COMPARISONS

C. Flood Inundation Evaluation Indexes

Finally, the CREST-simulated inundation spatial extents
were compared with the satellite-derived flood inundation
maps. The following several categorical verification statistics,
which measure the correspondence between the estimated and
observed occurrence of events, were used in this study: proba-
bility of detection (POD), false-alarm ratio (FAR), and critical
success index (CSI). POD measures the fraction of observed
events that were correctly diagnosed and is also called the “hit
rate” (Table II). FAR gives the fraction of diagnosed events that
were not observed. CSI gives the overall fraction of correctly
diagnosed events by CREST. Perfect values for these scores are
POD = 1, FAR = 0, and CSI = 1

POD = Hits/(Hits + Misses) (3)

FAR = False alarms/(Hits + False alarms) (4)

CSI = Hits/(Hits + Misses + False alarms). (5)

CREST was calibrated using MODIS-based flood extent
maps for the different events listed in Table I for which gauged
streamflow observations are not available. As pointed out ear-
lier, the purpose of this exercise is to investigate the possibility
of calibrating the hydrologic model through satellite remote
sensing data sets alone. The calibration period includes two
cloud-free MODIS images available in 2006 and 2007. The
objective function selected to guide the calibration process was
the CSI between satellite-based inundation maps and CREST-
modeled flood extents. The calibration terminates when im-
provements in CSI within the last three iterations are less than
0.001. The approach can have far-reaching implications for
hydrologic prediction in unguaged basins where no other means
are available to calibrate a hydrologic model.

IV. RESULTS AND ANALYSIS

In this section, we present the application of the two al-
ternative methods for inundation mapping, namely, CREST-
simulated and satellite-based methods described in Section III,
to generate the flood inundation maps for three different flood
events in the study area (see Fig. 4 and Table I). The com-
parison of CREST-simulated flood extent with satellite-based
observations will provide an evaluation of the CREST model
performance in simulating the spatiotemporal evolution of the
flood inundation extent. Unsupervised classification is an au-
tomatic and objective process that generates precise flooding

maps. However, flood inundation mapping from the binary
flood classification using optical sensors can be influenced by
cloud and vegetation cover. These lead to underdetection or
overdetection due to the influence of riparian vegetation and the
natural variability of the water surface, respectively. Compar-
isons between the CREST- and satellite-based flood inundation
extent for the three events listed in Table I are discussed next.

A. Evaluation of Inundation Extent for Event 1

Fig. 4(B1) and (C1) show true- and false-color composite
(bands 7, 2, 1) MODIS scenes, respectively. After the MODIS
data were acquired for December 4, the flood extent was derived
using the ISODATA classification [Fig. 4(A1)]. The December
event was also simulated using the distributed hydrologic model
CREST. Intercomparison was made between the satellite-based
flood detection and CREST-simulated flood inundation map
[Fig. 5(A1)]. The river channel and water bodies are shown
as light blue, MODIS detections are in black, and CREST
inundations are in blue. The overlapping flooded areas from
MODIS and CREST are shown in red. Further examination of
flood extents from CREST and MODIS indicates that the spatial
patterns of the flood extent are similar, as shown in Fig. 5(A1).
To quantify this similarity, a spatial correlation is introduced
and analyzed on a pixel-by-pixel basis. If a pixel is classified in
the same category (river channel and water bodies and flooded
area), on both inundation maps, the pixel is recoded as 1 (a
hit); otherwise, it is recorded as a nonflooded area denoted as 0
(a miss).

Fig. 6(A1) shows the statistical comparison between the
flood extents derived from MODIS and CREST for the Decem-
ber 2006 event, evaluated as a function of search radius. POD
shows an increase from 0.23 to 0.75 to 0.98 for radii of 250,
1000, and 2000 m, respectively. Fig. 6(A1) also shows that,
within a 250-m radius, FAR can be as high as 0.7. However, by
increasing the radius to 1000 m, FAR is reduced to 0.18. The
CSI is improved from 0.14 to 0.64 for radii of 250 and 1000 m,
respectively. By further increasing the radius to 2000 m, the
CSI is improved to 0.92. Thus, the two maps show a spatial
agreement of 92% at a radius of 2000 m in Fig. 6(A1).

B. Evaluation of Inundation Extent for Event 2

A well-documented flood event that occurred during August
2007, with an estimated return period of ten years, was used
to validate CREST model performance. Fig. 4(B2)–(B4) and
(C2)–(C4) shows the true- and false-color composite (bands 7,
2, and 1) MODIS scenes, respectively. MODIS-based flood
extent maps shown in Fig. 6(A1)–(A4) are derived from the
false-color composite scenes for August 15, 22 and 24, 2007,
respectively. The statistical comparison between the CREST
and MODIS flood inundation extents for these events is shown
in Fig. 6(A2)–(A4). Fig. 6(A2) shows that, on August 15, 2007,
the POD is increased from 0.37 to 0.93 with an increase in
radius from 250 to 1000 m. Similarly, FAR and CSI have shown
improvements by increasing the radius for the other days of this
event [Fig. 6(A3) and (A4)].
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Fig. 4. (A1–A4) MODIS-based flood inundation maps for December 4, 2006 and August 15, 22, and 24, 2007. (A5) ASTER inundation map for November 12,
2008. (B1–B5) MODIS true-color composite of bands 1, 3, and 4. (C1–C5) MODIS false-color composite of bands 7, 2, and 1.

C. Evaluation of Inundation Extent for Event 3

For the November 2008 event, the ASTER image with higher
spatial resolution is shown in Fig. 4(A5). The POD of CREST
shows an increase from 0.46 at a radius of 30 m to 0.88 at a
radius of 600 m. Fig. 6(A5) also shows that, within a 30-m

radius, FAR is as high as 0.75. However, with the increase of
the search radius to 600 m, FAR substantially decreases to 0.15.
The CSI is improved from 0.19 at 30 m to more than 0.76 at a
radius of 600 m.



92 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 1, JANUARY 2011

Fig. 5. Comparison of satellite-based and CREST-simulated flood inundation extents. First legend entry is the year and the Julian day of the flood event, followed
by the event identification number (refer to Table I).

V. CONCLUSION AND FUTURE WORK

We have studied the feasibility of setting up and calibrating
a distributed hydrologic model using satellite-based forcing,
parameters, and observations of flood inundation extents. This
approach is in contrast to the conventional method of flood-

modeling techniques, which are often not available in ungauged
basins or data sparse regions. The proposed approach imple-
ments a distributed hydrologic model with remote sensing data
and further calibrates the model parameters through satellite-
based flood inundation maps. Utilizing satellite-based data sets
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Fig. 6. Evaluation of hydrologic model-based spatial flood extents using inundated areas derived from (A1–A4) MODIS and (A5) ASTER. Evaluation is
performed as a function of search radius.

that are freely available in the public domain and integrating
them with distributed hydrologic models has the potential to
improve simulation and prediction of the spatial extent of
floods, even in ungauged basins. The broader impact of such
a demonstrated technique is to provide a cost-effective tool
to progressively build capacity for flood disaster prediction
and risk reduction in poorly or ungauged basins located in
many lesser developed or developing countries in Africa or
South Asia. Operationally implementing this strategy in those
areas will provide flood managers and international aid orga-
nizations a realistic decision-support tool in order to better
assess imminent flood impacts. This paper has demonstrated

the applicability of distributed hydrologic model calibration
using satellite-derived flood inundation maps from MODIS and
ASTER images in gauged basins.

The recent release of the ASTER Global Digital Elevation
Model with a resolution of 30 m and satellite-based precip-
itation products at high temporal resolution (e.g., TRMM at
3-h resolution) can be used to implement, calibrate, and force
distributed hydrologic models for flood prediction purposes.
Thus, further research on how to utilize spatially distributed
observations, such as high-resolution imagery and other mi-
crowave sensors, should be carried out in various geographi-
cal locations for the calibration and evaluation of distributed
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hydrologic models. The case studies on the Nzoia basin that we
have presented illustrate that, for regions with scarce ground-
based observations, remote sensing data can be used to imple-
ment hydrologic models with sufficient accuracy in predicting
spatial flood extents. It is noted that further improvements in
flood monitoring will be made possible with the integration of
satellite remote sensing products with ground-based observa-
tions and details of catchment properties.

ACKNOWLEDGMENT

The authors would like to thank the three anonymous review-
ers for their critical comments and constructive suggestions.

REFERENCES

[1] S. N. Jonkman, “Global perspectives on loss of human life caused by
floods,” Nat. Hazards, vol. 34, no. 2, pp. 151–175, Feb. 2005.

[2] J. McCarthy, Climate Change 2001: Impacts, Adaptation, and Vulnera-
bility: Contribution of Working Group II to the Third Assessment Report
of the Intergovernmental Panel on Climate Change. Cambridge, U.K.:
Cambridge Univ. Press, 2001.

[3] G. Brakenridge, E. Anderson, S. Nghiem, S. Caquard, and T. B. Shabaneh,
“Flood warnings, flood disaster assessments, and flood hazard reduction:
The roles of orbital remote sensing,” in Proc. 30th Int. RSE, Honolulu, HI,
Nov. 10–14, 2003.

[4] L. C. Smith, “Satellite remote sensing of river inundation area, stage, and
discharge: A review,” Hydrol. Process., vol. 11, no. 10, pp. 1427–1439,
1997.

[5] G. R. Brakenridge, S. V. Nghiem, E. Anderson, and R. Mic, “Orbital
microwave measurement of river discharge and ice status,” Water Resour.
Res., vol. 43, no. 4, p. W04 405, 2007.

[6] R. Brakenridge, “MODIS-based flood detection, mapping and mea-
surement: The potential for operational hydrological applications,” in
Transboundary Floods: Reducing Risks Through Flood Management.
New York: Springer-Verlag, 2006, pp. 1–12.

[7] C. M. Birkett, L. A. K. Mertes, T. Dunne, M. H. Costa, and M. J. Jasinski,
“Surface water dynamics in the Amazon Basin: Application of satellite
radar altimetry,” J. Geophys. Res.—Atmos., vol. 107, no. D20, p. 8059,
2002.

[8] F. Blasco, M. F. Bellan, and M. U. Chaudhury, “Estimating the extent of
floods in Bangladesh using SPOT data,” Remote Sens. Environ., vol. 39,
no. 3, pp. 167–178, Mar. 1992.

[9] M. France and P. Hedges, “A hydrological comparison of Landsat TM,
Landsat MSS, and black and white aerial photography,” in Proc. 7th Int.
Symp. ISPRS, Enschede, The Netherlands, Aug. 1986, pp. 717–720.

[10] J. R. Jensen, M. E. Hodgson, E. Christensen, H. E. Mackey, L. R. Tinney,
and R. R. Sharitz, “Remote-sensing inland wetlands—A multispectral
approach,” Photogramm. Eng. Remote Sens., vol. 52, no. 1, pp. 87–100,
1986.

[11] J. P. Watson, “A visual interpretation of a LANDSAT mosaic of the
Okavango-delta and surrounding area,” Remote Sens. Environ., vol. 35,
no. 1, pp. 1–9, Jan. 1991.

[12] I. J. Barton and J. M. Bathols, “Monitoring floods with AVHRR,” Remote
Sens. Environ., vol. 30, no. 1, pp. 89–94, Oct. 1989.

[13] S. J. Gale and S. Bainbridge, “The floods in eastern Australia,” Nature,
vol. 345, no. 6278, p. 767, 1990.

[14] H. Rasid and M. Pramanik, “Areal extent of the 1988 flood in Bangladesh:
How much did the satellite imagery show?” Nat. Hazards, vol. 8, no. 2,
pp. 189–200, Sep. 1993.

[15] I. Sandholt, L. Nyborg, B. Fog, M. Lô, O. Boucum, and K. Rasmussen,
“Remote sensing techniques for flood monitoring in the Senegal River
Valley,” Geogr. Tidsskr., vol. 103, no. 1, pp. 71–81, 2003.

[16] G. Brakenridge and E. Anderson, “Satellite gaging reaches: A strategy for
MODIS-based river monitoring,” in Proc. 9th Int. Symp. Remote Sens.,
Crete, Greece, 2003, vol. 4886, pp. 479–485.

[17] G. Stancalie, A. Diamandi, C. Corbus, and S. Catana, “Application of
EO data in flood fore-casting for the Crisuri Basin, Romania,” in Flood
Risk Management: Hazards, Vulnerability and Mitigation Measures.
New York: Springer-Verlag, 2004, p. 101.

[18] Y. Wang, “Using Landsat 7 TM data acquired days after a flood event
to delineate the maximum flood extent on a coastal floodplain,” Int. J.
Remote Sens., vol. 25, no. 5, pp. 959–974, Mar. 2004.

[19] Y. Wang, J. D. Colby, and K. A. Mulcahy, “An efficient method for
mapping flood extent in a coastal floodplain using Landsat TM and
DEM data,” Int. J. Remote Sens., vol. 23, no. 18, pp. 3681–3696,
Sep. 2002.

[20] C. Puech and D. Raclot, “Using geographical information systems and
aerial photographs to determine water levels during floods,” Hydrol.
Process., vol. 16, no. 8, pp. 1593–1602, Jun. 2002.

[21] D. Alsdorf, D. Lettenmaier, and C. Vörösmarty, “The need for global,
satellite-based observations of terrestrial surface waters,” EOS Trans.
AGU, vol. 84, no. 29, pp. 275–276, 2003.

[22] D. Alsdorf, E. Rodríguez, and D. Lettenmaier, “Measuring surface water
from space,” Rev. Geophys., vol. 45, no. 2, p. RG2 002, 2007.

[23] W. Marcus and M. Fonstad, “Optical remote mapping of rivers at sub-
meter resolutions and watershed extents,” Earth Surf. Process. Landforms,
vol. 33, no. 1, pp. 4–24, Jan. 2008.

[24] G. Schumann, P. Bates, M. Horritt, P. Matgen, and F. Pappenberger,
“Progress in integration of remote sensing-derived flood extent and stage
data and hydraulic models,” Rev. Geophys., vol. 47, no. 4, p. RG4 001,
2009.

[25] M. S. Horritt, “Calibration of a two-dimensional finite element flood flow
model using satellite radar imagery,” Water Resour. Res., vol. 36, no. 11,
pp. 3279–3291, 2000.

[26] M. S. Horritt and P. D. Bates, “Evaluation of 1D and 2D numerical
models for predicting river flood inundation,” J. Hydrol., vol. 268, no. 1–4,
pp. 87–99, Nov. 2002.

[27] G. Schumann, R. Hostache, C. Puech, L. Hoffmann, P. Matgen,
F. Pappenberger, and L. Pfister, “High-resolution 3-D flood information
from radar imagery for flood hazard management,” IEEE Trans. Geosci.
Remote Sens., vol. 45, no. 6, pp. 1715–1725, Jun. 2007.

[28] G. Di Baldassarre, G. Schumann, and P. D. Bates, “A technique for the
calibration of hydraulic models using uncertain satellite observations of
flood extent,” J. Hydrol., vol. 367, no. 3/4, pp. 276–282, Apr. 2009.

[29] M. S. Horritt, G. Di Baldassarre, P. D. Bates, and A. Brath, “Comparing
the performance of a 2-D finite element and a 2-D finite volume model
of floodplain inundation using airborne SAR imagery,” Hydrol. Process.,
vol. 21, no. 20, pp. 2745–2759, Sep. 2007.

[30] S. Swenson and J. Wahr, “Monitoring the water balance of Lake Victoria,
East Africa, from space,” J. Hydrol., vol. 370, no. 1–4, pp. 163–176,
May 2009.

[31] H. Fujisada, F. Sakuma, A. Ono, and M. Kudoh, “Design and preflight per-
formance of ASTER instrument protoflight model,” IEEE Trans. Geosci.
Remote Sens., vol. 36, no. 4, pp. 1152–1160, Jul. 1998.

[32] Y. Yamaguchi, A. B. Kahle, H. Tsu, T. Kawakami, and M. Pniel,
“Overview of Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER),” IEEE Trans. Geosci. Remote Sens., vol. 36, no. 4,
pp. 1062–1071, Jul. 1998.

[33] B. Rabus, M. Eineder, A. Roth, and R. Bamler, “The Shuttle Radar
Topography Mission—A new class of digital elevation models acquired
by spaceborne radar,” ISPRS J. Photogramm., vol. 57, no. 4, pp. 241–262,
Feb. 2003.

[34] B. Lehner, K. Verdin, and A. Jarvis, “New global hydrography derived
from spaceborne elevation data,” EOS, vol. 89, no. 10, pp. 93–94, 2008.

[35] G. J. Huffman, R. F. Adler, D. T. Bolvin, E. J. Nelkin, D. B. Wolff, G. Gu,
Y. Hong, K. P. Bowman, and E. F. Stocker, “The TRMM multisatellite
precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor
precipitation estimates at fine scales,” J. Hydrometeorol., vol. 8, no. 1,
pp. 38–55, Feb. 2007.

[36] M. A. Friedl, D. K. McIver, J. C. F. Hodges, X. Y. Zhang, D. Muchoney,
A. H. Strahler, C. E. Woodcock, S. Gopal, A. Schneider, A. Cooper,
A. Baccini, F. Gao, and C. Schaaf, “Global land cover mapping from
MODIS: Algorithms and early results,” Remote Sens. Environ., vol. 83,
no. 1/2, pp. 287–302, Nov. 2002.

[37] J. Jensen, Introductory Digital Image Processing: A Remote Sensing
Perspective. Upper Saddle River, NJ: Prentice-Hall PTR, 2005.

[38] R. L. Lang, G. F. Shao, B. C. Pijanowski, and R. L. Farnsworth, “Opti-
mizing unsupervised classifications of remotely sensed imagery with a
data-assisted labeling approach,” Comput. Geosci., vol. 34, no. 12,
pp. 1877–1885, Dec. 2008.

[39] J. Wang, Y. Hong, L. Li, J. J. Gourley, K. Yilmaz, S. Khan, F. S. Policelli,
R. F. Adler, S. Habib, D. Irwn, T. Korme, and L. Okello, “The Coupled
Routing and Excess STorage (CREST) distributed hydrological model,”
Hydrol. Sci. J., 2010, to be published.

[40] S. H. Brooks, “A discussion of random methods for seeking maxima,”
Oper. Res., vol. 6, no. 2, pp. 244–251, Mar./Apr. 1958.

[41] J. Nash and J. Sutcliffe, “River flow forecasting through conceptual
models. Part I—A discussion of principles,” J. Hydrol., vol. 10, no. 3,
pp. 282–290, Apr. 1970.



KHAN et al.: SATELLITE REMOTE SENSING AND HYDROLOGIC MODELING FOR FLOOD INUNDATION MAPPING 95

Sadiq I. Khan is currently working toward the
Ph.D. degree in the College of Atmospheric and
Geographic Sciences, The University of Oklahoma,
Norman.

He is currently also a Graduate Research Assis-
tant with the School of Civil Engineering and En-
vironmental Science, The University of Oklahoma.
His fields of interest include flood hydrology and
remote sensing in hydrology, particularly optical and
microwave remote sensing for flood hydrology and
management.

Mr. Khan is a member of the American Geophysical Union, Association
of American Geographers, and American Society for Photogrammetry and
Remote Sensing. He is the recipient of the NASA Earth and Space Science
Fellowship and was selected for an outstanding student paper award for the
research work he presented at the American Geophysical Union Fall 2009
Meeting in San Francisco, CA.

Yang Hong received the B.S. and M.S. degrees in
geosciences and environmental sciences from Peking
University, Beijing, China, and the Ph.D. degree,
major in hydrology and water resources and mi-
nor in remote sensing and spatial analysis, from
The University of Arizona, Tucson.

Following a postdoctoral appointment at the
Center for Hydrometeorology and Remote Sensing,
University of California, Irvine, he joined the NASA
Goddard Space Flight Center, Greenbelt, MD, in
2005. He is currently an Associate Professor with

the School of Civil Engineering and Environmental Sciences, The University
of Oklahoma, Norman, where he is also directing the Remote Sensing Water
Hydrology research group. He also serves as the Associate Director of the
Center for Natural Hazards and Disaster Research and an affiliated Faculty
Member with the Atmospheric Radar Research Center, Center for Spatial
Analysis, and Water Technology for Emerging Regions Center. He has served in
the editorial boards of the International Journal of Remote Sensing, the Natural
Hazards journal, and the Landslides journal. His primary research interests
are in remote-sensing retrieval and validation, hydrology and water resources,
natural hazard prediction, land surface modeling, and data assimilation systems
for water resource planning under changing climate.

Dr. Hong is currently the American Geophysical Union Precipitation
Committee Chair.

Jiahu Wang, photograph and biography not available at the time of publication.

Koray K. Yilmaz, photograph and biography not available at the time of
publication.

Jonathan J. Gourley received the B.S. and M.S.
degrees in meteorology with a minor in hydrology
and the Ph.D. degree in civil engineering and envi-
ronmental science from the University of Oklahoma,
Norman.

He is currently a Research Hydrometeorologist
with NOAA’s National Severe Storms Laboratory, is
an affiliate Associate Professor with the School of
Meteorology, University of Oklahoma, and Director
of the National Weather Center’s seminar series.
His research focuses on rainfall observations from

remote sensing platforms with an emphasis on ground-based radars and
implementing these high-resolution observations into hydrologic models. He
completed a postdoctoral study with researchers in Paris, France to demonstrate
the capabilities of dual-polarimetric radar in improving data quality, micro-
physical retrievals, and precipitation estimation. MeteoFrance has subsequently
upgraded several of their operational radars with polarimetric technology.

Dr. Gourley received the Department of Commerce Silver Medal Award
in 1999 “For developing an important prototype Warning Decision Support
System for weather forecasters and making significant enhancements to the
NEXRAD system, resulting in more timely and reliable warnings.” He also
received an Honorable Mention in 2004 from the Universities Council on Water
Resources Dissertation Awards Committee.

Robert F. Adler received the B.S. and M.S. degrees
from The Pennsylvania State University, University
Park, in 1965 and 1967, respectively, and the Ph.D.
degree from Colorado State University, Fort Collins,
in 1974.

His research focuses on the analysis of precipita-
tion observations from space on global and regional
scales using Tropical Rainfall Measuring Mission
(TRMM) data along with data from other satel-
lites. He studies precipitation variations in relation
to phenomena such as El Niño/Southern Oscillation,

volcanoes, and tropical cyclones, as well as longer interdecadal changes or
variations. He also leads the group that produces the global monthly and
daily precipitation analyses for the World Climate Research Program Global
Precipitation Climatology Project. He has published 80 papers in scientific
journals on the aforementioned topics. He is currently the TRMM Project
Scientist of the NASA Goddard Space Flight Center, Greenbelt, MD.

Dr. Adler is a Fellow of the American Meteorological Society. He was the
recipient of the Goddard Space Flight Center Exceptional Performance Award
in 1980, the NASA Exceptional Scientific Achievement Medal in 1989, the
NASA Outstanding Leadership Medal in 2002, and the Goddard Laboratory
for Atmospheres Scientific Leadership Award in 2002.

G. Robert Brakenridge, photograph and biography not available at the time
of publication.

Fritz Policelli, photograph and biography not available at the time of
publication.

Shahid Habib, photograph and biography not available at the time of
publication.

Daniel Irwin, photograph and biography not available at the time of
publication.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


