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s u m m a r y

Measurements of river discharge and watershed runoff are essential to water resources management,
efficient hydropower generation, accurate flood prediction and control, and improved understanding of
the global water cycle. Previous work demonstrates that orbital remote sensing can measure river dis-
charge variation in a manner closely analogous to its measurement at ground stations, and using reach
flow surface area instead of stage as the discharge estimator. For international measurements, hydrolog-
ical modeling can, in principle, be used to provide the needed calibration of sensor data to discharge. The
present study tests this approach and investigates the accuracy of the results. We analyze six sites within
the US where gauging station, satellite measurements, and WBM model results are all available. Knowl-
edge is thereby gained concerning how accurately satellite sensors can measure discharge, if the signal is
calibrated only from global modeling results without any ground-based information. The calibration (rat-
ing) equations obtained for the remote sensing signal are similar, whether based on gauging station or on
model information: r2 correlation coefficients for least squares fits at one example site (#524; White
River, Indiana) are both .66 (n = 144, comparing monthly daily maxima, minima, and mean, 2003–
2006). Space-based 4-day mean discharge values for this site when using the model calibration are accu-
rate to within ±67% on the average (n = 1824; largest percent errors occur at low discharges), and annual
total runoff is accurate to ±9%, 2003–2008. Comparison of gauging station versus modeled discharge
commonly indicates a small positive model bias; the observed errors of satellite-observed annual runoff
are also positive and could be improved by bias removal from the rating curves. Also, analysis of a large
flood event, along the Indus River in 2010, shows that the model does not capture flood wave attenuation
by overbank flow, and thus predicts faster flood wave celerity and higher peak discharge than was mea-
sured by the remote sensing. The incorporation of overbank processes would improve discharge estima-
tion via modeling, and also facilitate more accurate satellite-based measurement of peak discharge. The
analysis shows that existing and planned microwave sensors can usefully characterize global river dis-
charge dynamics, and that water balance model-based rating curves provide acceptable calibration of
remote sensing signal to discharge.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Measurements of river discharge and watershed runoff are
essential to water resources management, efficient hydropower
generation, accurate flood prediction and control, and improved
understanding of the global water cycle. River discharge at-a-site
is an integrated signal of water cycle processes over the catchment

area upstream, and large amounts of variability over relatively
small amounts of time commonly occur. This makes high fre-
quency (daily) measurements necessary for many rivers (Fekete
et al., 2012). Major efforts have been made to improve the interna-
tional availability of ground-based discharge data, but many na-
tions do not share hydrological data, and the network of ground
stations on a global basis is inadequate. Rivers and tributary
streams transgress political borders, causing downstream nations
to experience severe constraints in predicting surface water
incoming from upstream. Global hydrological modeling can assist
in evaluating runoff (Littlewood et al., 2003; Sivapalan et al.,
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2003); such modeling is complementary to direct measurements,
but not an accurate substitute for them (e.g. Cohen et al., 2011).

Space-based observational approaches for direct, sustained
characterization of river discharge and runoff have so far been little
utilized. Yet, they are now feasible, using existing and planned sen-
sors. New processing techniques using frequent-revisit micro-
wave-frequency sensing (Brakenridge et al., 2007) have
demonstrated a capability to track discharge changes via the sen-
sitive response to water surface area changes. Such information
can be obtained globally and in ‘‘near real time’’ (within several
hours after satellite overpass). These data require some method
of calibration to discharge to be most useful. Here we employ a glo-
bal water balance runoff model (WBM; Wisser et al., 2010, 2008) to
calibrate remote sensing to discharge: at measurement sites within
the US that are coincident to comparison ground gaging stations.
Error analysis indicates that model-based calibration of the remote
sensing signal can substitute for calibration by ground-based dis-
charge data at many sites without significant loss of discharge
accuracy. However, along some major rivers (the study example
is the Indus, in Pakistan), WBM does not presently account for very
significant flood wave attenuation via overbank flooding. Peak dis-
charge downstream is thus over-estimated, and model improve-
ments would facilitate more accurate rating curves.

2. Measuring discharge and runoff from space

Previous work demonstrates that orbital remote sensing from a
variety of sensors has the capability to characterize river discharge
variation in a manner closely analogous to its measurement at
ground stations (Brakenridge et al., 2005; Brakenridge et al.,
2007; Khan et al., 2011; Smith, 1997; Smith et al., 1996; Temimi,
2011). Thus, for ground gauging stations, frequent or continuous
river stage heights are calibrated to discharge using infrequent,
current meter traverses. These intermittent (‘‘actual discharge’’)
measurements obtained in the field sample flow velocities and
channel cross sectional areas under varying flow conditions, as
stage values are recorded. Empirical, ‘‘rating curves’’ that compare
stage to discharge are thereby developed. Conventional ground-
based discharge values based on stage-discharge rating curves
have an accuracy of 5–10% (Hirsch and Costa, 2004; Olson and Nor-
ris, 2007; Rantz et al. 1982; Schmidt, 2002).

In comparison, and for measurement via orbital remote sensing
methods, consider the flow continuity equation:

Q ¼ wdu ð1Þ

where Q is discharge (m3/s), w is flow width (m), d is flow depth
(m), and u is flow velocity (m/s). Inherent to flow continuity is that
measurements which monitor flow width also provide a proxy indi-
cator of changing discharge (unless the channel banks are vertical).
Along most rivers, w is similar to d in its sensitivity to discharge
change (Bjerklie et al., 2004); both are more robust predictors of
discharge than u. Thus, w measurements can be transformed, via
a rating curve, to actual discharge, if calibration estimates of actual
high, medium, and low discharges can be obtained while sustained
width-sensitive observation is underway (Smith, 1997; Brakenridge
et al., 2007).

As is the case for gauging stations on the ground, the local river
and floodplain channel geometry control the accuracy of rating
curve relations in a satellite-based approach. For stage-based mea-
surements at gauging stations, a desirable site exhibits stable chan-
nel geometry with relatively permanent and steep channel banks,
where discharge changes are accommodated mainly by changes
in d and stage. For observation via satellite, w changes can be most
frequently observed, and a desirable measurement site is one
where discharge changes are accommodated mainly by changes

in w. Most river systems exhibit reaches of both types. Some rivers
are in fact difficult to monitor by gauging stations due to variable
channel geometry, meandering or braiding channels, and other dy-
namic processes. Remote sensing responsive to w, (or, for a defined
reach, flow area) offers a potentially better approach at such
locations.

In this regard, there are actually two alternatives for sensing
changes in river ‘‘width’’: (1) measurement of actual flow width
changes, at individual cross sections (Bjerklie et al., 2003), or (2) re-
mote sensing signal measurements that are sensitive to flow area
change, along a defined measurement reach (Smith, 1997). Moni-
toring water surface area is particularly attractive, because it takes
advantage of the spatial coverage provided by remote sensing.
Reach surface water area is also less prone to local variation in riv-
erbed geometry, due to accomodating the net effects of local scour
and fill. In contrast, measuring flow width is observationally
demanding, because of the dual challenge of high spatial resolution
and frequent sampling in time. Furthermore, high-resolution char-
acterizations of a river at specific cross sections would require fre-
quent recalibration due to seasonal, annual, and inter-annual
changes in riverbed, location, and meandering patterns (just as
stage rating curves do). This paper employs the second approach,
which is most appropriate for remote sensing from above: using
sensors that are sensitive to flow area change, have frequent revisit
characteristics, and with sufficiently high spatial resolution to re-
cord small flow area changes.

River discharge can also be modeled instead of observed: by
parameterization of catchment areas and measurement of forcing
variables, including precipitation. This independent approach of-
fers an opportunity to calibrate the remote sensing to discharge
values. Through modeling, if changing catchment precipitation,
soil moisture, evapotranspiration, and other upstream watershed
characteristics can be measured or constrained, reasonably accu-
rate discharge can be estimated and for potentially unlimited loca-
tions along a river. As daily precipitation and other data fields are
ingested, updated model-based discharge estimates can be calcu-
lated at the same time intervals. Contemporary watershed runoff
modeling uses advanced computational capabilities to scale flow
routing and other functions to relatively fine scale watershed char-
acterizations (e.g. to a global grid at approximately 10 km).

This paper considers whether global hydrology model-based
discharge information can provide the needed calibration of re-
mote sensing observations. Such capability would enable sustained
satellite characterization of river discharge via either flow area or
(from altimetry) stage, and where in situ data are unavailable.
We analyze a suite of six river measurement sites within the US
where surface gauging station, remote sensing, and model results
are co-located. First, the temporal sampling needed to adequately
characterize river flow variation is considered. Next we describe
the passive microwave remote sensing that provides the needed
measurements. In order to test ground-based versus model-based
calibration outcomes, we employ the WBM water balance model
(Wisser et al., 2010, 2008) and obtain predicted daily discharges
for the measurement sites. Rating equations for the remote sensing
signal are developed and compared via two different methods: (1)
using modeled discharge values, and (2) using ground station-
measured discharge. The co-location with gauging stations also
allows constraints to be placed on the accuracy of satellite-based
discharge measurements using either approach.

3. Temporal sampling for discharge characterization

Earth-observing satellites are currently being planned to help
measure global river discharge and water storage changes and con-
strain runoff modeling (Alsdorf et al., 2003, 2007; Durand et al.,
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2008, 2010). Potential remote sensing revisit frequencies for any
given river location vary widely: from hourly, for geostationary
satellites, to �weekly, for low latitude locations in the proposed
Surface Water and Oceans Topography (SWOT) mission (Biancamaria
et al., 2010). Because of the constellation of sensors planned or
already available, there are clear opportunities for complementary
measurements, in which more-precise but relatively infrequent
observational data from experimental missions are combined,
when available, with less precise but ongoing and frequent surveil-
lance of rivers by operational systems.

The minimum temporal sampling needed to adequately charac-
terize river flow varies with river flow regime. Along some very
large rivers, where the daily discharge is strongly auto-correlated
and the rate of change is not fast, sampling frequency require-
ments may not be high. As a result, except during major flooding,
surface stations that provide a daily record may actually oversam-
ple. However, water discharge for most rivers is a rapidly varying
flux, at least during part of a season (Shiklomanov et al., 2006).
Thus: (1) a 10-fold discharge change may occur along many rivers
over a period of only several days, or less, and (2) a large propor-
tion of total annual river runoff may be concentrated in flood sea-
sons lasting only several weeks to several months. Also, measuring
low flow during a sustained drought, or high flow during a flood,
requires sustained high frequency observation: the duration of ex-
treme flow in days is as important as high precision individual
measurements in obtaining total monthly runoff. Shiklomanov
et al. (2006), analyzing Arctic rivers, describe in detail this strong
dependence on sampling frequency in measuring accurate values
for even total annual runoff.

Although stage-discharge rating curves exhibit various errors,
including hysteresis (Dottori et al., 2009), transformation of fre-
quently or continuously measured stage to estimate discharge
has long been accomplished within acceptable and well-
constrained accuracy and precision. An inherent motivation of this
overall approach is close-interval sampling in time. In some cases
(e.g. flood hydrographs along smaller rivers), the time scale may
be hours, but the large proportion of ground station-based river
discharge data is reported using daily time intervals. An important
challenge for remote sensing of river discharge is to achieve at least
this same frequent sampling in time while progressively improv-
ing, with better sensors and processing techniques, the accuracy
of individual (daily) measurements.

4. Passive microwave radiometry for river discharge
measurement

One reason for utilizing microwave information is that, at se-
lected frequencies, microwave radiation suffers relatively little
interference from cloud cover. Also, night overpasses can be uti-
lized; the signal does not require solar illumination. These attri-
butes allow for frequent data retrievals on a global basis (e.g.
pixel spatial resolutions of �10 km, daily or near-daily repeats).

Factors that affect total upwelling microwave brightness from a
mixed water and land surface measured by a single image pixel in-
clude: (a) sensor calibration characteristics (stability of its signal
through time), (b) perturbation of the signal by land surface
changes (e.g., surface temperature, soil moisture, crop changes,
snowfall, and rainfall), and (c) contrast between land and water
at the frequency being used (very different values of emissivity
for water and land favor the most sensitive monitoring of water
area change). Also, microwave frequencies have more commonly
been used to observe soil moisture changes (Schmugge, 1980;
Theis et al., 1982; Ulaby et al., 1978; Wang et al., 1982, 1980; Njoku
et al., 2003; Nghiem et al., 2012). Because of the sensitivity of
microwave emission to soil moisture as well as surface water,

measurements of surface water change must incorporate some
method to remove variations caused by temporal changes in soil
moisture.

The fundamental basis of passive microwave sensitivity to river
discharge for mixed water/land pixels was analyzed with a micro-
wave emission model derived from first principles (Brakenridge
et al., 2007). The emission model is developed from fluctuation–
dissipation theory, incorporating the non-isothermal conditions
of riverine environments. Correlations of electromagnetic fields de-
rived from Maxwell’s equations with different signal polarizations
can be cast in form of a hyperbolic cotangent factor of the quantum
energy (⁄x) over the absolute physical temperature (Tsang et al.,
1985), operated on a tensor product involving the polarization vec-
tor, complex effective permittivity, and dyadic Green’s function
(Nghiem et al., 1990).

A difficulty in interpreting the microwave radiance measured
by a satellite is that it is a product of both physical temperature
and emissivity. Whereas the emissivity contains water informa-
tion, the physical temperature can change quickly, depending on
time of the day, solar shading (e.g., topographic shadowing), and
weather conditions. Whereas many passive microwave methods
use the polarization ratio (PR) and the frequency gradient ratio
(GR) to cancel physical temperature within a pixel, PR and GR also
reduce the sensitivity to water change (Brakenridge et al., 2007).
The key for river discharge measurement is to cancel the physical
temperature, also using a ratio approach, but with the river mea-
surement pixel amplitude value compared to nearby but separate
calibration pixel values. This approach retains a high sensitivity
to river discharge variability expressed as water surface area
changes (Brakenridge et al., 2007).

Finally, the reach water surface area rather than flow width ap-
proach also greatly relaxes the spatial resolution requirements for
sensing flow variation. The microwave signal from a defined river
reach, and geographically including both: (a) lower channel water
area, and (b) upper channel bar surfaces and floodplain dry land,
will track discharge: as the river rises and falls, the reach water
and land proportion changes, and only a sensitive numeric indica-
tor of such is needed. An actual map of water versus land is not re-
quired. The microwave signal variation from individual, relatively
large (�10 km) pixels centered over rivers can thus be used di-
rectly: the measured reach is one such pixel (Brakenridge et al.,
2007). This approach in fact requires relatively large image pixels,
because it is important that the highest floods not completely fill or
saturate a pixel. The sensitivity, noise characteristics, and stability
of the remote sensing signal are, however, critical, and the remote
sensing data must be accompanied by high quality geocoding: any
variation in the actual ground surface being sampled by repeat
measurements introduces noise.

5. Geographic sampling considerations for global
measurements

For global characterization of freshwater runoff through rivers,
a large array of sites, at least several thousand, is needed: this still
provides only several hundred per continent and leaves many ma-
jor streams and rivers un-monitored. There are many potential is-
sues involved with efficient design of gauging station networks
sampling global scale land areas. For example, although a set of rel-
atively few gauges located near the mouths of large rivers can cap-
ture a considerable portion of the total discharge to oceans (Fekete
et al., 2002), the remaining contributing landmasses are frag-
mented into hundreds of small watersheds. Also, discharge should
best be measured just downstream of the confluences of tributar-
ies, because discharge varies downstream only gradually along
trunk streams, whereas tributaries typically add a large sudden
increment that is important to capture.
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Design criteria for global sampling schemes are beyond the
scope of this paper. However, previous MODIS imaging of global
surface water variability (Brakenridge et al., 2005; Brakenridge
and Kettner, 2012) provides abundant (n = 2583) suitable locations
where flow area variation has already been measured optically on
an intermittent basis (Fig. 1). At these locations, it has been dem-
onstrated that a water area-sensitive remote sensing signal will
monitor flow variability. These potential measurement sites are
thus a useful starting point in designing a global array.

Microwave signal data for these and additional sites (De Groeve,
2010; De Groeve et al., 2006; De Groeve and Riva, 2009; Kugler and
De Groeve, 2007) added more recently are available at: http://
www.gdacs.org/flooddetection/. The sensitivity of each measure-
ment site to discharge variation, and the character of each site’s
signal-to-discharge rating curve, are both a function of individual
site characteristics, and especially channel and floodplain mor-
phology. An efficient calibration approach is needed to convert
these numerous discharge-sensitive records to discharge units.

6. Choice of data and processing strategies

The data available to monitor rivers in the microwave domain
includes the 37 GHz channel provided by the SMMR (Scanning
Multichannel Microwave Radiometer) in 1978–1987, the SSM/I
(Special Sensor Microwave Imager) aboard the Defense Meteoro-
logical Satellite Program satellite series (1987 to present), the
37 GHz channel aboard TRMM (Tropical Rainfall Measurement
Mission, 1998 to present), similar frequency but including V/H
polarimetric data provided by AMSR-E, (Advanced Microwave
Scanning Radiometer for Earth Observation System) July, 1,
2002–October 4, 2011, and the recently launched (early 2012)
AMSR instrument aboard the Japanese satellite GCOM-w. Most
data from these sensors are made available in swath image formats
(not geolocated into map projections, but with accompanying lat-
itude and longitude coordinate information for each pixel) and also

as geocorrected raster images (pixels of fixed dimensions and geo-
graphic location within global or large-region raster files).

In this study, we describe two passive microwave data sources
and also two signal processing methods. However, the comparisons
use mainly one data source and one method: AMSR-E data pro-
cessed according to the first method, below. It was used prior to
transition to the second method in the current processing scheme.

Method 1 uses AMSR-E 36.5 GHz, horizontal H polarization,
descending orbit (night) data, as obtained by a swath image pixel
value retrieval algorithm (De Groeve et al., 2006). In this algorithm,
data from within a 5 km radius of a geographic point target are re-
trieved, as determined by the geolocation information for each pix-
el (the values obtained are from pixels whose centers are within
that radius). The river measurement reaches (the ‘‘M’’ data) are,
therefore, circular in shape. Also, information from a fixed and
nearby (dry land) comparison site (the ‘‘C’’ data) is retrieved from
the same swath image and includes an area of identical size, man-
ually selected to be free from mapped streams and rivers. M/C, a
dimensionless ratio value, is the discharge estimator; as noted,
use of the ratio isolates any change that affects only one of the pix-
els and, in particular, river flow area variation. Data processed in
this way show a strong correlation to measured discharge at many
sites in the US (Fig. 2a, Fig. 3).

Method 2 uses AMSR-E 36.5 GHz, total amplitude (V and H
polarizations combined), and including data from both ascending
and descending orbits, as mosaicked within georeferenced, glo-
bal-coverage, near real time raster images. These image data are
in latitude and longitude (Plate Carree) projection, with pixel
dimensions of .0833� (approximately 9.27 km square at the equa-
tor but with decreasing east–west km dimensions at increasing
distances from the equator). The processing, as automatically
performed by the Global Flood Detection System in Ispra, Italy
(De Groeve, 2010; De Groeve and Riva, 2009), also calculates a
dimensionless ratio value from these rasters, but the comparison
value is based on the brightest (driest) values from a 7 � 7 pixel
array in the raster and centered on the measurement pixel. The

Fig. 1. Satellite river measurement sites (n = 2583) where optical remote sensing (2001–2010) detects significant surface water area variation within the site reaches (10 km
in length). Near-daily time series of passive microwave signal have been obtained and archived for each site since July 1, 2002. Evaluation of the 10 yr + time series allows the
daily signal data to be binned into low flow (yellow dots, <5th percentile of complete series), normal flow (blue dots), moderate flood (purple dots, recurrence interval
>1.33 yr via Log Pearson III) and large flood (bright red dots, >5 yr recurrence via Log Pearson III). Red dots at high latitudes are processing errors due to ice-covered
conditions.
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(a)

(b)

Fig. 2. (a) Top: Plot of the microwave discharge estimator ratio, 4-day running means, calculated according to method 1, for each day, January 1, 2009–December 31, 2010,
versus 4-day forward running mean gauging station discharge, White River, southern Indiana (remote sensing site 524; gauging station USGS 03360500 White River at
Newberry, Indiana). (b) Bottom: Plot of the estimator ratio, calculated according to method 2, versus the gauging station information, same time period. Vertical scales are in
ft3/s.

(a)

(b)

Fig. 3. (a) Top: satellite-estimated daily 4-day running mean river discharge, site 524, in red, compared to 4-day running mean discharge measured at the co-located gauging
station (blue). Rating curve was based on comparison of daily station and (method 2) satellite data; applicable Nash–Sutcliffe statistic is .60. (b) Bottom: satellite-estimated
discharge, red, using a rating based on the WBM model-produced discharge information (same remote sensing data); applicable Nash–Sutcliffe statistic is .61. The model-
based rating curve underestimates peak discharge but characterizes average flow conditions quite accurately. Vertical scales are in ft3/s.
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measurement pixels each contain the same latitude and longitude
point targets as for the first method, but the fixed pixel ground
footprint means that the river reach being sampled differs signifi-
cantly (with a maximum shift of a half pixel size, or about 5 km).
This approach does not require the manual selection of the calibra-
tion pixel, making it computable anywhere in the world. Its other
advantage is that single-pixel variation in the calibration informa-
tion cannot so strongly affect the discharge-estimator signal. In de-
tail, the algorithm calculates the (95th percentile) brightest value
of the calibration pixels and the ratio of that value to the measure-
ment pixel value (Fig. 2b, Fig. 3). Previous comparisons of the two
methods for other sites indicate the results to be strongly corre-
lated (Fig. 2) and to exhibit comparable amounts of scatter and er-
ror (De Groeve and Riva, 2009).

In both processing methods, a 4-day forward running mean is
applied, because AMSR-E does not provide daily revisits at lower
latitudes. Instead, some locations commonly are revisited every
2 days, or, very rarely, only every 3 days, as the AMSR-E orbit pre-
cesses. The 4-day running mean facilitates a most-current update,
daily, with values for every location globally. In any comparisons to
ground station data or model output, therefore, we also use 4 day
running mean data. Future microwave sensors such as NASA’s
planned GPM mission will provide more-than-daily revisits and
thus a daily update without multi-day averaging will be possible
at all latitudes.

The AMSR-E data offer the capability to consistently monitor
river measurement sites for nearly a decade (data begin in July,
2002) and for ground footprints of approximately 10 km; however,
the sensor ceased operation on October 4, 2011. The 37 GHz fre-
quency and H polarization were selected in method 1 because H
polarization data exhibits the strongest differential response to
water and land (Brakenridge et al., 2007) at this frequency and
with lesser sensitivity to soil moisture. The ongoing TRMM satellite
output provides similar microwave data (but from a non-polar or-
bit, and without high latitude coverage). The signal processing at
GDACS/GFDS is presently using these TRMM data; as noted, the
methods described are also applicable to an array of similar fre-
quency remote sensing from other sensors.

7. The WBM global hydrology model

The WBM model includes the water balance/transport model
first introduced by (Vörösmarty et al., 1998, 1989) and subse-
quently modified (Wisser et al., 2010, 2008). WBM is a relatively
simple but robust water budgeting scheme that takes into account
climate forcings (air temperature and precipitation in its simplest
form) and estimates various water stocks (soil moisture and
groundwater) and fluxes (evapotranspiration, surface runoff,
groundwater recharge and baseflow). WBM has been applied suc-
cessfully in small watersheds at 200 m spatial resolution, up to a
global scale at 6 min grid (approximately 11 km at the equator) cell
sizes. WBM was probably the first hydrological model applied to a
global domain. The main difference between WBM and comparable
large-scale hydrological models is the high degree of flexibility in
specifying computation domains and input data and configuration.
WBM has demonstrated a bias of 5–8 mm/yr (Fekete et al., 2002;
Vörösmarty et al., 1998) with respect to annual runoff (297 mm/
yr). Numerous studies have shown that the most critical input var-
iable is precipitation (Fekete et al., 2004; Biemans et al., 2009).

At its core, the surface water balance of non-irrigated areas is a
simple soil moisture budget expressed as:

dWs=dt ¼
�gðWsÞðEp � PaÞ Pa 6 Eþ p

Pa � Ep Ep < Pa 6 DWS

DWS � Ep DWS < Pa

8><
>:

ð2Þ

driven by g(Ws), a unitless soil function:

gðWsÞ ¼
1� e �aWs

Wcð Þ
1� e�a ð3Þ

Ws is the soil moisture, Ep is the potential evapotranspiration, Pa

is the precipitation (rainfall Pr combined with snowmelt Ms), and
Dws is the soil moisture deficit: the difference between available
water capacity Wc, which is a soil and vegetation dependent vari-
able (specified externally) and the soil moisture. The unit-less
empirical constant a is set to 5.0 following Vörösmarty et al.
(1989).

Flow routing from grid to grid cell follows the downstream grid
cell tree topology (which only allows conjunctions of grid cells up-
stream, without splitting to form islands or river deltas) and is
implemented using the Muskingum–Cunge equation, which is a
semi implicit finite difference scheme to the diffusive wave solu-
tion to the St. Venant equations (ignoring the two acceleration
terms in the momentum equation). The equation is expressed as
a linear combination of the input flow from current and previous
time step (Qin t�1, Qin t) and the released water from the river seg-
ment in the previous time step (Qout t�1) to calculate new grid-cell
outflow:

Qoutt ¼ c1Qint þ c2Qint�1 þ c3Q outt�1 ð4Þ

As described by Wisser et al. (2010), the Muskingum coeffi-
cients (c1 c2 c3) are estimated from channel properties (width,
depth, slope, and length) using the relations of Cunge (1969) and
Dooge et al. (1982). We use a power function approximation of
channel geometry w = ayb to express the relationship between
the width (w) and depth; b dictates the ratio and of flood-wave
celerity to flow velocity.

In this paper, the WBM water discharge predictions are from a
daily, global scale simulation at 6 arc-min (�11 km) spatial resolu-
tion. Daily predictions are averaged by a 4 day running mean win-
dow to align with the satellite microwave 4 day averaging process.
The precipitation dataset is from the Global Precipitation Climate
Center GPCC, Offenbach, Germany (gpcc.dwd.de) using their ‘‘Full’’
product, which combines long-term precipitation climatology, de-
rived from the entire data archive, with anomalies estimated from
the operating meteorological stations at any given time. The GPCC
‘‘Full’’ product is available at monthly time steps at 30 arc-min spa-
tial resolution. Daily partitioning of the monthly precipitation to-
tals was established by computing the daily fraction of the
monthly precipitation from the NCEP reanalysis product (Kalnay
et al., 1996; Kistler et al., 2001). A 6 minute topological network
(Vörösmarty et al., 2000) was derived from the high resolution
gridded network HydroSHEDS using SRTM elevation data set
(Lehner et al., 2008). A comprehensive list of the model input
datasets is provided (Cohen et al., 2011).

8. Testing WBM model output for rating curve generation

The United States is monitored by a relatively dense array of
operational hydrological gaging stations. Data from these allow
us to evaluate the effectiveness of a model-based approach to cal-
ibrate remote sensing measurements to discharge values.

We chose six sites for satellite-based measurement in the con-
tinental US (Fig. 4) that are coincident to or in very close proximity
with in situ stations providing daily measurements between 2002
and 2010. The site locations and attributes represent diverse geo-
morphological, land-use and climate settings (Table 1). Although
this is a small number of sites, their analysis provides the opportu-
nity to consider in detail the relationship of the remote sensing to
station-observed discharge variation and that provided by the
model.
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For each site, the empirical relation (the rating curve) between
the remote sensing signal and ground station-measured water dis-
charge is constructed. As well, the signal is compared to coeval
model results, to produce a separate and independent model-based
rating curve for each site. This would be one method for calibrating
thousands of river measurement sites distributed globally (Fig. 1).
By comparing the rating curves, and the resulting discharge time
series, we can investigate how accurately satellite sensors can
measure discharge, if the signal is calibrated only from global model-
ing results: without any ground-based information.

Three temporally coincident datasets are used in each case
(Fig. 5):

1. Daily, including the complete (9 year) daily values (n = 3285).
2. Monthly, including the monthly mean, maximum and mini-

mum daily values for 12 months (n = 36).

3. Yearly, including the annual mean, maximum and minimum
daily values (n = 27).

For consistency, second-order polynomial rating curves are
used to evaluate the scatter plots created in all cases (Table 2).
We compared our results using other regression equations without
substantial change in the results. Because of relatively large scatter
at the lower end of some river discharge regimes (the flow area
method becomes less sensitive once flow is fully confined within
the lower channel), there is an additional requirement that all por-
tions of the polynomial curve remain monotonic or flat.

We seek also to determine the optimal calibration strategy
(daily, monthly or yearly values) that could be applied to a large
number of sites. Fig. 6 shows daily water discharge time-series
(2002–2010) for the six sites and as based on both model-based
and station-measured calibrations. The plots also include the

Fig. 4. Location map for the remote sensing river measurement sites and co-located USGS gaging stations.

Table 1
Characteristics of six remote-sensing sites and corresponding USGS gaging stations (Fig. 4) and the Indus site and gaging station (Fig. 7). Site mean discharge is as predicted by
WBM.

Site
ID

Site river
name

Site coordinates lat./
long. (dd)

Site drainage
area (km2)

Site mean
discharge (m3/s)

Station ID Station coordinates
lat./long. (dd)

Station drainage
area (km2)

Station mean
discharge (m3/s)

507 Missouri,
Brunswick

39.34/�93.02 1264,731 1206 06906500 39.22/�92.849 1292,151 1709

524 White,
Newberry

38.91/�87.07 12,802 161 03360500 38.92/�87.011 12,137 182

530 Red, Halstad 47.26/�96.84 65,000 39 05082500 47.92/�97.029 77,929 170
925 Willamette 45.18/�123.01 19,710 504 14191000 44.94/�123.042 18,928 591
997 Connecticut 41.84/�72.632 26,240 500 01184000 41.98/�72.606 25,116 567

2483 Pee Dee 33.82/�79.32 28,706 336 02135200 33.66/�79.155 36,660 372
2010 Indus, Hala 25.9/68.26 1070,050 2730 Mandi

Plain
31.75/74.75 20,886 497
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measured discharge at the co-located gaging station (Fig. 4 and Ta-
ble 1) for comparison. The top plot for each site is obtained from
the daily data rating curve; the middle from calibration with
monthly statistics; and the bottom from yearly statistics (e.g.,
Fig. 5a, b and c respectively). Black lines in Fig. 6 show the ground
station-measured discharge; blue lines the satellite results based
on using ground station data for the rating curves, and red lines
the satellite results which use model output for the rating curves.

Overall, visual comparison of the remote sensing signal to sta-
tion-measured discharge yields a generally strong time series cor-
relation. Fig. 3 also provides such comparison on an expanded
temporal scale; the applicable Nash–Sutcliffe values are .60 and
.61. In the Fig. 6 plots, however, we are concerned with under-
standing how the choice of calibration, via rating curves, affects
the discharge results. Calculating the Nash–Sutcliffe descriptive
statistic assists in this regard: higher values should indicate more
correlated results (without further consideration of other factors
bearing on such statistics, including autocorrelation, time lags,
data distributions, influence of outliers, etc.).

From Fig. 6, discharge estimation based on daily data calibration
(rating curves such as in Fig. 5a) is similar to that obtained when
the rating curve uses monthly and yearly statistics: if station data

rather than modeling are used for the rating curve. Nash–Sutcliffe
values range among the sites between .11 and .37 (satellite-
observed, compared to gauging station data). In contrast, discharge
values obtained from model-based calibration methods (dashed
orange lines in Fig. 6) can vary depending on whether daily versus
yearly or monthly data are used for the rating curves, and also
there is more variability by site: the modeling, as expected, is more
accurate at some sites than at others.

In this regard, modeled daily data-based rating equations pre-
dict lower than observed discharge (most clearly in site #530;
Fig. 6). Comparison of WBM model results to measured discharge
further indicates that the model itself generally under-predicts
mean discharge (Table 1). In sites #997 and #2483, the daily
data-based rating curve produces more accurate results than
monthly and yearly calibrations (e.g., for #997, Nash–Sutcliffe val-
ues of .2 for the daily-based calibration compare to �1.0 for the
monthly and yearly). In these two cases, WBM considerably
over-predicted high discharge events (Fig. 6).

The results overall demonstrate the sensitivity of any
model-based calibration approach to the accuracy of the model
predictions. They indicate that using yearly and monthly statistics
to calibrate the AMSR-E signal data to discharge, in most cases,

(a)

(b)

(c)

Fig. 5. Example plots (site #925) of method 1 microwave discharge estimator values versus WBM-simulated discharge. (a) Top: Daily values using the entire dataset. (b)
Middle: Monthly values (monthly mean, minima and maxima). (c) Bottom: Yearly values, using only yearly mean, minimum and maximum. The daily value-based rating
equation underestimates flood flows.
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better constrains the size of very high discharge events: even
though, for some events, there is over-estimation of the flood
magnitude (i.e. sites 997 and 2483; Fig. 6). WBM Model-based cal-
ibration, in general, is found to be a viable approach for translating
the remote sensing signal to discharge, and we find no major
advantage in using daily information rather than monthly or yearly
mean, maximum, and minimum values, as defined above, and
within this analyzed 9 year period of record.

To further evaluate errors associated with the method 2 data
and associated processing, daily station-measured and remote
sensing-measured values (n = 1824) were obtained for one site
(#524), 2003–2006 using the model-based, monthly value-based
rating curve. Assuming the gauging station data as representing
true discharge, the average error departure of the remote sensing
(daily-incremented) discharge values is 67%, with percentage er-
rors being largest at times of low flow. These relatively large daily
value errors are reduced in the calculation of runoff totals from
these data, and in part because high error values at low flows less
strongly affect runoff totals. For annual values 2003–2008, the
average error is 9%.

Previous work (Brakenridge et al., 2007) indicates one source of
error in the daily values produced by this remote sensing tech-
nique is the lack of exact temporal match between station and re-
mote sensing discharge series. For example, major flood peak
discharge as measured by surface gauging stations may precede
by 1–2 days the peak recorded by remote sensing (which is mea-
suring reach flow area along an entire river measurement site).
Such lags produce a negative departure (remote sensing value –
station value) as the peak flow passes the station and while the
reach area is progressively flooding. Then, several days later, a po-
sitive error occurs as stage is already declining at the station (in
part due to the overbank flow). Thus, the peak discharge value
may be recorded accurately by both ground-based stage and satel-
lite-based flow area techniques, but the timing may differ and lead
to large increases in the average daily measurement error and in
descriptive statistics such as the Nash–Sutcliffe coefficient.

9. Modeling and remote measurement of an extreme flood

As noted, for many locations globally, daily discharge informa-
tion from surface gauging stations is difficult or impossible to ob-
tain. Even where gauging station data are available and are public,
large floods can temporarily damage or entirely disable surface sta-
tions. Although orbital remote sensing can, presently, provide valu-
able river discharge information and monthly and annual runoff
volumes, there are significant errors still to be addressed (examine
the time series shown in Figs. 3 and 6). Perhaps the greatest asset
of the remote sensing capability here detailed is its ability to be
quickly and easily applied to new measurement sites of interest,
without field access. An example is now presented to enable fur-
ther examination of the utility of satellite microwave river dis-
charge measurements in general, and those based on WBM
model calibration in particular. The results further emphasize that
accurate remote sensing measurement via this approach will de-
pend on the quality of any hydrological model used for calibration.

During the summer monsoon of 2010, the upstream Khyber-
Pakhtunkhwa region of Pakistan experienced rainfall totals
>300 mm July 27–30, and the Punjab, Gilgit Baltistan and Azad
Kashmir provinces received July rainfall totals of >500 mm. The
trunk stream (Indus) flood hydrograph then traversed 500 km of
river reach to the sea, mainly along a meandering channel that is
constrained within a 15–20 km wide floodplain by engineered
artificial levees. All of this floodplain (and more) was inundated
(Syvitski and Brakenridge, 2013).

Analysis of optical remote sensing data indicates that most
damage was caused by multiple failures of irrigation system levees,Ta
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and by barrage-related backwater effects that initiated failures and
led to avulsions (sudden changes in flow location). We consider
here the difference between the modeled and the remotely-
observed flood hydrograph at an illustrative remote sensing
measurement site.

The WBM-modeled peak discharge for this flood at site #2010,
south of a major levee failure and partial avulsion of the Indus at
the Tori Bund, is �26,000 m3/s, with flow being elevated above
15,000 m3/s for only several days (Fig. 7). However, the model
includes no limitations on the volume of water transported in a
river at a point in time (no change to overbank flow conditions is

incorporated). This can cause over-prediction of the magnitude of
high flow events (as shown in the US sites #997 and #2483; see
also Cohen et al., 2011). Also, the modeled water is transported
much too rapidly downstream. A new version of WBM (currently
in testing) will address these limitations by incorporating an
over-bank flow component that acknowledges the reality of chan-
nel overtopping during large discharges. Also, the present model
does not include the possibility of avulsion.

Comparison of the remotely sensed discharge at station #2009,
upstream of the avulsion at Tori, and at #2010 indicate a reduction
of measured peak flow downstream of the breach by �10,000 m3/s

Fig. 6. Nine year (2002–2010) daily time series of water discharge for the six remote-sensing sites (numbering corresponds to Fig. 4 and Table 1). Gauging station-measured
discharge is plotted with a thick black line, microwave signal-estimated discharge based on the gauging station data is plotted with a blue line, and microwave signal-
estimated discharge based on WBM model-predicted discharge is plotted with a dashed orange line. The top plot for each site is for calibration using the entire daily dataset,
the middle plot is for calibration using only the monthly statistics and the bottom plot for calibration using only yearly statistics.
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(Syvitski and Brakenridge, 2013). Fig. 7 shows the very different
shape of the observed hydrograph at this site compared to that
modeled for it. Thus, avulsion reduced the peak flow, and, also,
the flood was experienced for much longer (22 days of
>15,000 m3/s) than the model predicted. During large floods, and
even along heavily engineered rivers, major attenuation of the
flood wave typically occurs, and this is illustrated in the Indus
example. This attenuation can be measured in detail by this form
of remote sensing. However, its adequate characterization by mod-
eling at this spatial scale remains an important task for future
work. The lack of accurate modeled peak discharge for extreme
events may in turn generally affect model-based rating curves
and the remote sensing-assessment of peak discharge magnitudes.

10. Conclusion

The results indicate that microwave satellite discharge charac-
terization at selected river reaches can approach ground station
information in its utility for several applications, including the
analysis of flood dynamics and the quantification of longer term
watershed runoff volumes. However, remote sensing of rivers
through these methods does require some form of calibration to
discharge values via rating equations. The examples we analyzed
indicate that the needed transformation of water-area sensitive
remote sensing to river discharge can be accomplished by
incorporation of global runoff model results. Using the described
or similar microwave data and processing approaches, and for river

Fig. 6. (continued)
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measurement sites whose channel and floodplain morphologies fa-
vor flow area variability, 4-day running mean daily discharges as
measured via satellite compare favorably with information ob-
tained by gauging stations. The timing and duration of periods of
high and low flow are accurately constrained, and the relative
magnitude in m3/s of flood peaks can be determined. However, dai-
ly value accuracies exhibit significant errors, in part due to a lack of
exact temporal match in the timing of some major flood peaks. For
annual runoff expressed in mm/yr, observed errors, at the suite of
sites examined, and using a global model-based calibration ap-
proach was relatively small. This suggests that the measurement
technology is already able to deliver significant new information
for water balance studies at many international locations, and
without support by ground-based information.

We stress the synergy between different remote sensing ap-
proaches for discharge measurement. One upcoming space agency
mission (the US/France SWOT satellite) is being designed to pro-
vide global data sets of accurate swath radar altimetry-based river
stage and slope, but without a long-term record and with a short
(3-year) nominal mission life. Flow area measurements through
existing and planned microwave sensors can, meanwhile, be made
frequently (�daily); they can potentially be extended back about
three decades in time at favorable sites, and they can be continued
while SWOT is collecting data and afterwards. Several satellites are
currently providing appropriate, stable, well-calibrated, water
area-sensitive data; these can already be used. For many research
efforts and well as practical applications, both long-term data
and current near-real-time observations are necessary. The

Fig. 6. (continued)
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challenge is to develop processing methodologies that can ingest,
analyze, and disseminate the results, provide reliable error esti-
mates, and allow synergistic incorporation of new sensor data
when such become available.

In regard to the best calibration/rating curve approaches, our
analysis indicates significant variation in the rating curve equa-
tions, depending on whether model-based daily, monthly or yearly
statistics are used. In general, daily data-based rating curves do not
always accurately estimate the highest flow events: polynomial or
other regressions applied to the comparisons of modeled and ob-
served daily data from the calibration period may not accurately
capture the relation between the largest discharge and the remote
sensing signal, and especially when the modeled routing of flood
waves inadequately captures overbank and other flow attenuation
processes. Rating curves based instead on monthly or yearly max-
imum and minimum statistics better characterize the signal/dis-
charge relation at the extremes. Preliminary work using the
method 2 data and processing indicates that incorporating a 5 year
period of record for both modeled and observed values, and using
monthly daily maxima, minima, and mean values (n = 180) com-
monly produces rating curves with monotonic, second order poly-
nomial least square regression r2 values >.6 at favorable sites, and
also provides the most accurate prediction of peak flow values.
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