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In this work we demonstrate the utility of satellite remote sensing for river discharge nowcasting and forecasting
for two major rivers, the Ganges and Brahmaputra, in southern Asia. Passive microwave sensing of the river and
floodplain atmore than twenty locations upstream of Hardinge Bridge (Ganges) and Bahadurabad (Brahmaputra)
gauging stations are used to: 1) examine the capability of remotely sensed flow information to track the down-
stream propagation of river flow waves and 2) evaluate their use in producing river flow nowcasts, and forecasts
at 1–15 days lead time. The pattern of correlation between upstream satellite data and in situ observations of
downstream discharge is used to estimate wave propagation time. This pattern of correlation is combined with
a cross-validation method to select the satellite sites that produce the most accurate river discharge estimates in
a lagged regression model. The results show that the well-correlated satellite-derived flow (SDF) signals were
able to detect the propagation of a river flow wave along both river channels. The daily river discharge (contem-
poraneous) nowcast produced from the upstream SDFs could be used to provide missing data estimates given
its Nash–Sutcliffe coefficient of 0.8 for both rivers; and forecasts have considerably better skill than autoregressive
moving-average (ARMA) model beyond 3-day lead time for Brahmaputra. Due to the expected better accuracy of
the SDF for detecting large flows, the forecast error is found to be lower for high flows compared to low flows.
Overall, we conclude that satellite-basedflowestimates are a useful source of dynamical surfacewater information
in data-scarce regions and that they could be used for model calibration and data assimilation purposes in
near-time hydrologic forecast applications.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

River flowmeasurements are critical for hydrological data assimila-
tion andmodel calibration in flood forecasting and otherwater resource
management issues. In many parts of the world, however, in situ river
discharge measurements are either completely unavailable or are diffi-
cult to access for timely use in operational flood forecasting and disaster
mitigation. In such regions, flood inundation information derived from
microwave remote sensors (e.g. Birkinshaw et al., 2010; Bjerklie et al.,
2005; Brakenridge et al., 2005, 2007, 1998; De Groeve, 2010; Smith,
1997; Smith & Pavelsky, 2008 and Temimi et al., 2005) or surface
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water elevation estimated from satellite altimetry (e.g. Alsdorf et al.,
2000, 2001; Birkett, 1998; Jung et al., 2010) could be used as alternative
sources of surface water information for hydrologic applications.

Brakenridge et al. (2007) demonstrate, through testing over differ-
ent climatic regions of the world, including rivers in the Unites States,
Europe, Asia and Africa, that satellite passive microwave data can be
used to estimate river discharge changes, river ice status, and watershed
runoff. The data were obtained by the Advanced Microwave Scanning
Radiometer–Earth Observing System (AMSR-E) aboard NASA's Aqua
satellite. The method uses the large difference in 36.5 GHz (14×8 km
spatial resolution), H-polarized, night-time “brightness temperature”
(upwelling radiance) between water and land to estimate the in-pixel
proportion of land to water, on a near-daily basis over a period of more
than 10 years. The measurement pixels are centered over rivers, and
are calibrated by nearby reference pixels over dry land to remove other
factors affectingmicrowave emission (a ratio is calculated). The resulting
signal is very sensitive to small changes in river discharge for all ranges of
the moisture content in the calibration pixel.
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Using the same data from AMSR-E, De Groeve et al. (2006) provide a
method to detectmajor global floods on a near-real time basis. De Groeve
(2010) shows in Namibia, southern Africa, that the passive microwave
based flood extent corresponds well with observed flood hydrographs
in monitoring stations where the river overflows the bank. It was also
noted that the signal to noise ratio is highly affected by variable local con-
ditions on the ground (DeGroeve, 2010), such as the river bank geometry
and the extent of flood inundation. For example, in cases of confined
flows, the river stays in the banks and hence the change in river discharge
mainly results in water level variation without producing much differ-
ence in river width.

Upper-catchment satellite based flowmonitoringmay providemajor
improvements to river flow forecast accuracy downstream, primarily in
the developing nations where there is a limited availability of ground
based river discharge measurements. Bangladesh is one such case
where river flooding has historically been a very significant problem to
socioeconomic and public health. Major flooding occurs in Bangladesh
with a return period of 4–5 years (Hopson & Webster, 2010) caused by
the Ganges and Brahmaputra Rivers, which enter into the country from
India, and join in the Bangladeshi low lands. Because of limited river dis-
charge data sharing between the two countries, the only reliable river
streamflow data for Bangladesh flood prediction is from sites within
the national borders, and this has traditionally limited forecast lead-
times to 2 to 3 days in the interior of the country.

Several water elevation and discharge estimation attempts have
beenmade based on satellite altimetry for the Ganges and Brahmaputra
rivers. Jung et al., 2010 used satellite altimetry from Shuttle Radar
Topography Mission digital elevation model (SRTM DEM) to estimate
water elevation and slope for Brahmaputra River. The same study also
appliedManning's equation to estimate discharge from thewater surface
slope and Woldemichael et al. (2010) later improved the discharge
estimation error through better selection of hydraulic parameters and
Manning's roughness coefficient. Siddique-E-Akbor et al. (2011) com-
pared the water elevation derived from Envisat satellite altimetry with
simulated water levels by HEC-RASmodel for three rivers in Bangladesh,
in which they reported the average (over 2 years) root mean square dif-
ference of 2.0 m between the simulated and the satellite based water
level estimates.

In another study, Papa et al. (2010) produced estimates of monthly
discharges for the Ganges and Brahmaputra rivers using TOPEX-
Poseidon (T-P), ERS-2, and ENVISAT satellite altimetry information.
Such monthly and seasonal discharge estimates are important for
weather and climate applications, but shorter time scale information
is also needed, such as daily or hourly, for operational short term river
flow forecasting. However, the use of altimetry data is currently tempo-
rally sampling rate limited to a 10 day repeat cycle (T-P) or a 35 day
repeat cycle (ER-2/ENVISAT). Biancamaria et al. (2011) also used T-P
satellite altimetry measurements of water level at upstream locations
in India to forecast water levels for Ganges and Brahmaputra rivers
after they cross the India–Bangladesh border. The same paper also sug-
gests that “… the forecast might even be improved using ancillary satellite
data, such as precipitation or river width estimates” (Biancamaria et al.,
2011, p.5).

The current study usesmultiple upstream estimates of the riverwidth
(area covered by river reach) along the main river channels to forecast
discharge at downstream locations. Specifically, we examine the utility
of using passive microwave derived river width estimates for near-
real time river flow estimation and forecasting for the Ganges and Brah-
maputra rivers after they cross India/Bangladesh Border. One of the ad-
vantages of using passive microwave signal is that the sensors do not
suffer very much from cloud interference; another is that they are
very much more frequent than any available altimetry (river stage) in-
formation. Limitation of discharge estimation from remotely sensed
river width is the relatively small change in river width at some loca-
tions even when there is significant in-channel discharge changes
(Brakenridge et al., 2007) To overcome this problem, measurement
locations should be chosen carefully to maximize sensitivity of width
to discharge fluctuation.

The following has two parts. First, we investigate directly the use of
satellite-derived flow signal (SDF) data produced by the Global Flood
Detection System of the GDACS (Global Disaster and Alert Coordination
System, Joint Research Center-Ispra, European Commission) for tracking
river flow wave propagation along the Ganges and Brahmaputra. These
data are available to the public at: http://old.gdacs.org/flooddetection/;
see also Kugler and De Groeve, 2007 pdf file enclosed, from http://
floodobservatory.colorado.edu/GlobalFloodDetectionSystem.pdf. SDF in-
formation is, as noted, the ratio of the brightness temperature of nearby
land pixels, outside of the reach of the river, to the brightness tempera-
ture of the measurement pixel (centered at the river). The second part
of the study uses the SDF information for river flow simulation and fore-
casting in Bangladesh. The SDF is also combined with persistence to as-
sess the degree of forecast improvement compared to persistence and
Autoregressive moving-average (ARMA) model forecast. The discharge
forecast has also been converted to water level and compared to in-situ
river stage measurements. The simulations and forecasts are compared
against ground based discharge measurements. The details of data used
are described in Section 2. Section 3 presents the results of the flow signal
analysis, the variable selectionmethod is described in Section 4, and then
the results of discharge nowcasting and forecasting in Section 5. Section 6
summarizes the water level forecast results.

2. Study region and data sets

2.1. Study region

The study areas are the Ganges and Brahmaputra river basins in
south Asia (see Fig. 1). These are transboundary Rivers which join
in lowland Bangladesh after crossing the India–Bangladesh border.
There is substantial need for accurate and timely river flow forecast
in Bangladesh. For example, according to estimates (CEGIS, 2006a,
2006b; RIMES, 2008; Hopson & Webster, 2010), an accurate 7 day
forecast has the potential of reducing post-flood costs by as much
as 20% over a cost reduction of 3% achieved with just a two-day fore-
cast. Beginning in 2003, Hopson and Webster (2010) developed and
successfully implemented a real-time probabilistic forecast system
for severe flooding for both the Ganges and Brahmaputra in Bangla-
desh. This system triggered early evacuation of people and livestock
during the 2007 severe flooding along the Brahmaputra. Although
the forecast system shows useful skill out to 10-day lead-times by
utilizing satellite-derived TRMM (Huffman et al., 2005, 2007) and
CMORPH (Joyce et al., 2004) precipitation estimates and ensemble
weather forecasts from the European Center for Medium Weather
Forecasts (ECMWF), Hopson and Webster (2010) also indicate that
the accuracy of the forecasts could be significantly improved if flow
measurements higher upstream in the catchments were available. The
limited in-situ data sharing between Bangladesh and the upstream
countries makes the remotely sensed water data the most useful.

It should also be noted that impoundments and diversions of the
river flows between remotely-sensed measurement locations would
lessen the predictability of the approach presented in this paper. How-
ever, as discussed further in Hopson andWebster (2010), The Brahma-
putra has yet (as of the most recent data period in this study) to have a
major hydraulic structure built along its course (Singh et al., 2004) and
as such, it can be modeled as a naturalized river. For the water diver-
sions along the Ganges, these structures were designed primarily for
use in the dry season and not during the monsoonal flood season. On
the basis of an additional study by Jian et al. (2009) and the Flood Fore-
casting and Warning Centre (FFWC, 2000, personal communication), it
is assumed themajor diversions do not affect discharge into Bangladesh
beyond 15 June. However, Ganges dry season low flow predictability
may be impacted, a topic we will return to this later in Section 6 of
this study.

http://old.gdacs.org/flooddetection/
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2.2. Data sets

The Joint Research Center (JRC-Ispra, http://www.gdacs.org/
floodmerge/), in collaboration with the Dartmouth Flood Observa-
tory (DFO) (http://www.dartmouth.edu/~floods/) produces daily
near real-time riverflow signals, alongwith floodmaps and animations,
at more than 10,000 monitoring locations for major rivers globally
(GDACS, 2011). For details of the methodology used to extract the
daily signals from the passive microwave remote sensing (the
American and Japanese AMSR-E and TRMM sensors), the reader is
referred to De Groeve (2010) and Brakenridge et al. (2007). In
this study, we use the daily SDF signals along the Ganges and Brah-
maputra river channels provided by the JRC. The river flow signals
are available starting from December 8, 1997 to the present. Data
from a total of 22 geolocated sites ranging between an upstream
distances from the outlet of 63 to 1828 km were analyzed for the
Ganges, and 23 geolocated sites with a range of 53 to 2443 km
were used for the Brahmaputra. Further details of these data are
presented in Table 1.

Water level observations for the Ganges River at Hardinge
Bridge and the Brahmaputra River at Bahadurabad (Fig. 1) were
obtained from the Flood Forecasting and Warning Center (FFWC)
of the Bangladesh Water Development Board. We also used daily rating
curve-derived gauged discharge from December 8, 1997 to December
31, 2010 for model training and validation purposes. See Hopson and
Webster (2010) for further details on the rating curve derivations.
Fig. 1. The Brahmaputra and Ganges Rivers in South Asia. The satellite flood signal observa
(bottom left) rivers. The observation sites are shown in small dark triangles and they are la
3. Satellite-derived flow signals

3.1. Correlation with gauge observations

Fig. 2a and b shows correlations between three SDF estimates
and gauge discharge observations at Hardinge Bridge (Ganges) and
Bahadurabad (Brahmaputra) versus lag time, respectively, and with the
correlation maxima shown by solid circles on the figures. The within-
channel distances between the locations where the upstream SDF were
measured and the outlet of the watershed have also been indicated in
the figures. The variation of correlations with lag time has different char-
acteristics depending on the flow path length (FPL, the hydrologic dis-
tance between the SDF detection site and the outlet). Specifically, for
shorter FPL the correlation decreases monotonically with increasing lag
time; however, for longer FPL the correlation initially increases to reach
a maximum value, and then decreases with increasing lag time. This lag
of the correlation pattern (in this case, shifting of the maximum with
FPL) is in agreement with the fact that river flow waves take a longer
time for the furthest FPL to propagate from upstream location to the
downstream outlet. The time at which maximum correlation occurs is
an approximate estimate of the flow time.

3.2. Variation of flow time with flow path length

We estimate the travel time from the correlation pattern of the SDFs
by assuming that the lag time at which the maximum correlation
tions are located on the main streams of the Brahmaputra (top right) and the Ganges
beled by the GFDS site ID (see Table 1).

http://www.gdacs.org/floodmerge/
http://www.gdacs.org/floodmerge/
http://www.dartmouth.edu/~floods/
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Table 1
Details of the satellite-derived flow signals (“MagnitudeAvg” in the GDACS database)
used for the study. The site ID, latitude, longitude and flow path length (FPL) are pro-
vided. The period of record for all the data, including the satellite flood signals and
the gauge discharge observations at Hardinge Bridge and Bahadurabad is December
8, 1997 to December 31, 2010.

Ganges Gauging location at Hardinge
Bridge: 24.07N, 89.03E

Brahmaputra Gauging location at
Bahadurabad: 25.09N, 89.67E

GFDS
site ID

Latitude
(N)

Longitude
(E)

FPL
(KM)

GFDS
site ID

Latitude
(N)

Longitude
(E)

FPL
(KM)

1 11478 24.209 88.699 63 11533 25.451 89.707 53
2 11488 24.469 88.290 121 11545 25.875 89.910 117
3 11518 25.341 87.030 340 11558 26.014 90.282 145
4 11522 25.402 86.670 370 11555 26.221 90.738 204
5 11523 25.415 86.379 420 11554 26.148 91.214 285
6 11524 25.409 85.950 550 11560 26.205 91.683 330
7 11536 25.660 85.069 650 11570 26.383 92.119 385
8 11537 25.722 84.587 676 11576 26.574 92.586 475
9 11532 25.672 84.150 690 11579 26.671 93.074 496
10 11528 25.585 83.700 725 11580 26.776 93.555 590
11 11527 25.513 83.430 800 11583 26.853 94.062 630
12 11539 25.620 81.519 1180 11593 27.089 94.456 660
13 11548 25.938 81.207 1220 11603 27.394 94.748 712
14 11559 26.149 80.815 1300 11610 27.603 95.040 750
15 11575 26.423 80.439 1320 11619 27.836 95.293 837
16 11588 26.852 80.123 1381 11677 29.296 91.305 1698
17 11595 27.179 79.786 1431 11681 29.300 90.854 1737
18 11606 27.494 79.470 1520 11687 29.369 89.441 1907
19 11616 27.738 79.110 1590 11685 29.295 88.966 1929
20 11623 28.003 78.674 1640 11684 29.334 88.443 1996
21 11651 28.812 78.131 1761 11675 29.303 88.049 2045
22 11691 29.259 78.035 1828 11678 29.232 85.230 2380
23 11679 29.267 84.709 2443

Fig. 2. a. Correlation versus lag time betweendaily in-situ streamflowand upstreamsatellite
flood signals, SDFs (only 3 shown here) and gauge discharge at Hardinge Bridge along the
Ganges River in Bangladesh. As expected, the lag time at which peak correlation occurs
(shown as a dark dot) is greater for longer flow path lengths (FPL) from the gauge at
Hardinge. b. Correlation versus lag time between daily in-situ streamflow and upstream sat-
ellite flood signals, SDFs (only 3 shown here) and gauge discharge at Bahadurabad along the
Brahmaputra River.
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occurred is a proxymeasure of the river flowwave celerity propagation
time. The estimated flow time for each SDF is shown on Fig. 3a and b for
the Ganges and Brahmaputra rivers respectively. In these figures, the
flow time estimated from the river flow signals was plotted against its
flow path length, where the flow path length is the hydrologic distance
between the river flow signal detection sites to the observed gauging
location of the watershed (e.g. Hardinge Bridge for the Ganges, and
Bahadurabad for the Brahmaputra). We estimated the flow path length
from a digital elevation map (DEM) of 90 m resolution obtained from
the HydroSHEDS (Hydrological data and maps based on SHuttle Eleva-
tion Derivatives at multiple Scales) data.

If the river flow wave propagation speed were to be assumed con-
stant, then the elapsed flow time should increase linearly with flow
path length. However this is not strictly the case for both rivers in this
study (see Fig. 3a and b). Instead, we observe variations of flow time
with upstream distance. This should in fact be expected. Consider in
the case of the Brahmaputra that thewave speed on the Tibetan plateau
is probably higher than on the low-gradient plains of Bangladesh, and
speeds are likely quite high as the river descends through steep gorges
into Indian's Assam State. As an example, the flow time appears less
than or equal to 1 day for flow distances shorter than 750 km and
1000 km for the Ganges and Brahmaputra respectively; however the
flow time appears to increase to more than 10 days for the Ganges at
FPLs of 750 km and 7 days for the Brahmaputra at FPLs of 100 km.
Other possible factors contributing to the inconsistent increase of the
flow timewithflow length are: the noise introduced by the local ground
conditions (perhaps the most significant factor), unaccounted inflows
generated between the satellite and ground based observation loca-
tions, intrinsic changes in the celerity of different magnitude flow
waves, propagation time variations during times of lower base flowver-
sus higher base flows, among others.

It should also be noted that there are considerable differences in
propagation speed estimates between the Ganges and Brahmaputra
rivers. For example, it appears to take 11 days for river flow waves to
travel 1828 km distance (the furthest upstream point, 11691) along
the Ganges, whereas, for the Brahmaputra, only 2 days appear to be re-
quired for a comparable path length of 1907 km (site 11687).

Even under the expectation of differing wave celerity for different
reaches of the same river, it is still informative to derive an approximate
average propagation time over the majority of the length of the river
course using the SDM data to see if these data produce an estimate in
a physically-reasonable range. First, we note the correlation of flow
time to flow path length estimates shown in Fig. 3a (Ganges) and b
(Brahmaputra) are 0.78 and 0.66, respectively, and the correlations
are statistically significant (pb0.01). To estimate the celerity from
these data, we constrain a regression fit through the origin (zero dis-
tance and zero flow time), and the inverse of the slope provides the ce-
lerity, giving 2.3≤2.9≤3.8 m/s for the Ganges, and 7.5≤9.6≤13.5 m/s
for the Brahmaputra. However, because the strength of the original cor-
relation differs for each of the data points shown in Fig. 3, as a check a
weighted least-squares fit to the data was also performed, where the
weights are given by the strength of the data point's correlation.
These latter results give only slightly different estimates of themean ce-
lerity (with estimates and regression lines shown in Fig. 3). Also note

image of Fig.�2


Fig. 3. a. Plot of flow time (as estimated from the satellite flood signal data) versus dis-
tance from the satellite flow detection point to the outlet (Hardinge bridge station) of
the Ganges River. The flow time is the lag time at which the peak correlation occurred,
as shown in Fig. 2a. The flow speed estimated from the slope of the fitted line is 2.9 m/s.
b. Same as Fig. 3a, but for Brahmaputra river. The flow speed estimated from the slope
of the fitted line is 9.6 m/s.
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that the Brahmaputra celerity is estimated to be more than three times
that of the Ganges, as anticipated given the Brahmaputra's steeper aver-
age channel slope. The elevation of Ganges drops only 225 m form the
furthest upstream site (“11475”) to theHardinge Bridge over a flowdis-
tance of 1828 km, while that of Brahmaputra drops more than 3870 m
for a comparable flow distance from site “11687” to Bahadurabad.

As a separate check, we would like to derive independent estimates
for the wave propagation times estimated in Fig. 3. Both of these rivers
have lowgradients around the downstreamgauging locations of interest,
so it is anticipated that pressure gradient effects would need to be
accounted for in estimatingwave speeds around these locations. Howev-
er, as discussed further in Hopson and Webster (2010), attempts to ac-
count for dynamic (and hysteresis) effects in the characterization of
the depth and discharge relationship at the downstream gauging loca-
tions were not significant. So further noting that because both the
discretization time of the satellite estimates is one day, and that also
both channels' flow slowly varies in time, we expect that most of the
low frequency channel width variations we have detected can at least
be approximated by kinematic wave theory. To estimate a range of pos-
sible wave propagation speeds, we use the derived rating curves for the
downstream gauging locations, estimates for the range of channel
widths, and the Kleitz–Seddon Law (Beven, 1979) for kinematic wave
celerity c,

c ¼ 1
W

dQ
dy

ð1Þ

whereW is the channel top-width,Q the discharge, and y the river stage.
For the Brahmaputra at Bahadurabad we estimate 4 m/sbcb8 m/s; for
the Ganges at Hardinge Bridge we estimate 2 m/sbcb6 m/s. As with
the satellite-derived signals, these estimates also show the wave propa-
gation speeds of the Brahmaputra being greater than those of the
Ganges, with its flatter channel slope. It should also be noted that the
celerity estimated from the satellite-derived flow signals represents a
total reach-length (i.e. FPL) average, while these kinematic wave speeds
strictly apply only over the neighboring region of the gauging locations.

3.3. Limitations of the flow propagation model

Note that the accuracy of the simple model of wave celerity we have
presented in the last section and shown in the regression lines of Fig. 3a
and b, is based on the degree of which the source of the discharge is
based in the upper catchments of the rivers, which then propagates
downstream, with lagged positive correlations between upstream dis-
charge estimates and the downstream gauging locations. In principal,
however, sources of precipitation and thus river flow occur throughout
the river catchment. As one such example, a significant portion of the
Brahmaputra river basin's dry season flows stem from Himalayan snow
melt up in the higher reaches of the catchment's Tibetan plateau, which
would lead to a strengthening of the upstream–downstream discharge
correlation. However, during the monsoon season, some of the largest
sources of precipitation occur in the lower reaches of the catchment in
the hills of India's Meghalaya state, bordering Bangladesh, containing
the village of Mawsynram, one of the wettest locations on earth.

To investigate the influence of the location, spatial, and temporal
scale of precipitation on the simple model for estimated flow propaga-
tion time shown in Fig. 3, we conducted a simple synthetic experiment
where both the distribution, spatial size, and temporal length of rainfall
over a saturated hypothetical watershed is varied, and then the excess
rainfall is routed to the outlet using a linear reservoir unit hydrograph
(Chow et al., 1988). In the synthetic experiment, the areal coverage
(as a fraction of catchment area) of the precipitation, the location of
the rainfall within the hypothetical watershed, and the length the pre-
cipitation persisted were varied to isolate the impacts of spatial and
temporal scale and distribution on propagation time estimates. The
results (not shown here) from this synthetic experiment do indeed
indicate that variable precipitation distribution over the watershed af-
fects the correlation between streamflow at multiple upstream loca-
tions and at the outlet, as one would expect. Interestingly, over our set
of experiments there was no impact on the optimal lag in the correla-
tion between two locations; however, in the presence of experimental
noise, certain scenarios could lead to a more likely misdiagnosing of
this lag. However, to systematically describe the influence of the precip-
itation scale on river flowwave propagation time, a separate and amore
realistic experiment (beyond the scope of the current paper) with ob-
served precipitation data over the river basin would be necessary.

4. Selection of satellite flow signals for discharge estimation

As presented in the previous sections, the SDF are well correlated to
the daily ground discharge measurements and they also capture the
propagation of river flow waves going downstream for the Ganges
and Brahmaputra rivers. We used the SDF available upstream of the
Hardinge Bridge (Ganges) and Bahadurabad (Brahmaputra) to produce

image of Fig.�3


Fig. 4. a. Lagged correlation map of daily satellite-derived flow signals calculated
against the discharge observation at Hardinge Bridge for Ganges River. The horizontal
axis shows the satellite flood signal sites (see Fig. 1) arranged in the order of increasing
flow path length and the vertical axis shows lag time (days). b. Same as Fig. 4a, but for
Brahmaputra.
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daily discharge nowcast and forecasts for 1–15 day lead times at the
gauging stations.

To accomplish this, a cross-validation regressionmodel is applied, in
which the anomaly of SDF signals are used as a regression variable and
the ground discharge observation anomaly at the outlet is used for
training and validation purposes. The nowcasting/forecasting steps for
each lead time increment are as follows:

i. Calculate the correlation map. The correlation map is helpful for
understanding the linear relationship between the SDF signals
and the grounddischarge observation. The variability of the corre-
lationwith lag time (as described in Section 3) can also be used to
trace the river flow wave propagation. Another useful aspect of
the correlation map is that it can be used as an indicator of the
most relevant variables to be used in the discharge estimation
model. All data sets have different correlations depending on the
location, flow path length and lag time, indicating that the local
ground condition, besides the place and time of observation,
should be taken in to consideration before using the SDF for any
application. All data sets do not have strong linear relationship
with the ground observation andhence this step is useful for iden-
tifying the variables more related to the river flow measurement
for the discharge estimation model to be used in the next steps.
It should be noted that the correlationmap calculated fromanom-
alies is different from the map shown in Figs. 4a and b, which
were calculated directly from observations before removing cli-
matology.

ii. Sort the correlation in decreasing order. Variables which aremore cor-
related with ground discharge measurements will be used in the
forecast model, thus to simplify the selection process, we sorted
the correlations calculated (see Fig. 4) in step i before performing
the selection task.

iii. Pick the variables to be used in the discharge estimation model and
generate the river discharge. We use a cross-validation approach to se-
lect variables, among the SDF signals atmultiple sites, to be used in the
model. Identifying the most relevant regression variables is required
in order to prevent over fitting and thus to reduce the error in the es-
timated discharge. We select the best correlated river flow signals to
the ground discharge observation as “the most relevant variables” to
be used in the model. To determine the optimal number, we applied
a ten-percent leave-out cross-validation model, where 10% of the
data is left out (to be used for validation) at a time and a linear regres-
sion is fit to the remaining 90%. This is done repeatedly until each data
point is left out, but no data point is used more than once for the val-
idation purpose. This is followed by calculating the root mean square
error (RMSE) of the validation sets. Finally, the number of variables
that produced the smallest RMSE calculated over the whole out-of-
sample data sets is considered as the optimal number to be used in
the regression model. The variables selected for each lead time fore-
cast have been shown in the Appendix (Figs. A1 and A2). The mini-
mum RMSE criterion is simple to implement but it should be noted
that this criteria might suffer from isolated extreme events (see
Gupta et al., 2009).

iv. Repeat the steps ii–iii for all lead times. We generated the river dis-
charge nowcast and forecast for each lead time (1 to 15 days)
by repeating the regression variable identification and discharge
generation steps.

5. Results of discharge nowcasts and forecasts

5.1. Discharge nowcasts and forecasts using satellite river flow signals
only

We use the cross-validation approach presented above to gener-
ate discharge nowcast (lead time of 0 days) and 1 to 15 days lead
time forecast from the SDF signals detected at multiple points (see
Table 1) upstream of the Hardinge Bridge (Ganges) and Bahadurabad
(Brahmaputra). Past and current satellite river flow signals at several
locations upstream of the forecast points were used as input to the
forecasting model, and the rating curve-derived gauge discharge ob-
servations (December 8, 1997 to December 31, 2010) at the outlets
were used for model training purpose. Fig. 5 shows time series
plots of the discharge nowcast and 5- and 10-day forecasts overlaid
on the gauge observations for Ganges River at the Hardinge Bridge
(Figs. 5a and b) and Brahmaputra river at Bahadurabad (Figs. 5c
and d) during a pair of selected monsoon flood years.

The discharge nowcast estimated from SDF captured fairly well the
Ganges monsoonal flow of 2003 but with some underestimation of
the peak flow of September 20, 2003 (see Fig. 5a). The rising and falling
limbs of the discharge during the summer period also generally
matched (with little fluctuations). Similarly, there is good agreement
with the rising and falling sides of the flow for 2007 (see Fig. 5b), but
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the highest peak is again underestimated by the SDF forecast. The SDF
nowcasts for 2004 and 2007 Brahmaputra flooding events (Fig. 5c and
d respectively) showed similar cases of flood peak underestimation, es-
pecially for 2007. Generally there is good agreement for the rising and
falling limbs for both summers.

The time series for 5- and 10-day lead SDF forecasts have also been
shown in Fig. 5 for both the Ganges (2003 and 2007) and Brahmaputra
(2004 and 2007). As with the nowcasts, the 5-day forecasts show some
skill in capturing the peak flows, with the 10-day lead forecast showing
no skill at forecasting the peak flood of the September 20, 2003 of the
Ganges (Fig. 5a). However, all the forecasts are not considerably far
from the observations during the entire monsoon season. Similarly, for
2007 (Fig. 5b) all the forecasts miss the first peak but the falling and
rising limbs of themonsoon seasonwere fairlywell-captured. The results
for the Brahmaputra (Fig. 5c and d) are not appreciably different from
the Ganges results. In particular, the peak floods of the Brahmaputra
2007 monsoon season (specifically July, 7 and September, 13), as
shown in Fig. 5d, were marginally captured by the 5-day forecasts,
with the 10-day lead forecasts showing essentially no skill. We ex-
amine next the forecast of the entire time series instead of just select
years.

Fig. 6 presents the NS efficiency coefficient (see Eq. 2) versus lead
time calculated for whole time period ranging from December 8, 1997
Fig. 5. Daily time series of observed river discharge, nowcast and forecast (for selected lead t
(5a) and 2007 (5b) results for Ganges River at Hardinge bridge station in Bangladesh. The low
ten day lead time forecasts are selectively shown in these plots. The details of the satellite-
to December 31, 2010, which can be viewed as an error variance normal-
ized by the climatological variance of the signal. The Nash–Sutcliffe (NS)
efficiency coefficient is calculated as:

NS ¼ 1−

XN

i¼1

Qoi−Qmi

� �2

XN

i¼1

Qoi−Q
−

o

� �2
ð2Þ

where Qoi is observed discharge at time i, Qmi is themodeled discharge at
time i, and �Q o is themean. Note that a NS value of onemeans the forecast
and the observations are identical, while a NS value of zero means the
forecast is no better than forecasting the fixed climatological average
( �Q o). It considers the entire flow cycle but does not provide specific
information on how well flood peaks or low flows are predicted, for
which other metrics are more appropriate. The NS efficiency score
of the 1-day lead time discharge forecast was 0.80 and declined to
0.52 for 15 day forecast in the case of the Ganges; similarly the NS
for the Brahmaputra decreased from 0.80 for the 1-day forecast to
0.56 for the 15-day forecast. These NS scores show that the SDF
nowcasts and forecasts capture a majority of the variability in the
river discharge time-series.
ime) based on the river flow signal observed from satellite. The upper panels show 2003
er panels are 2004 (5c) and 2007 (5d) plots for Brahmaputra at Bahadurabad. Five and
derived flow signals used for the nowcasting have been presented in Table 1.
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Fig. 6. The Nash–Sutcliffe coefficient versus forecast lead time for Ganges and Brahmaputra
Rivers. Only satellite-derived flow signals were used for the forecast. The Nash–Sutcliffe co-
efficients were calculated for the whole time period of record (December 8, 1997 to
December 31, 2010).
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To account for optimal model changes due to seasonal variability
of the river flow, we performed the cross-validation based regression
separately for the dry (November–May) and wet (June–October) sea-
sons, but there was no appreciable NS efficiency forecast skill score
Fig. 7. Daily time series based on satellite derived signals and persistence (SDF+PERS) base
2003 (6a) and 2007 (6b) flooding of Ganges River at Hardinge bridge station in Bangladesh.
improvements due to the seasonal classification. Overall, the results
indicate that the remotely sensed flow signals contain useful informa-
tion regarding surface water flow estimation and forecasting and
could be used in these large rivers to improve river flow forecasting
skill, especially if used in conjunction with other flow forecasting data.
5.2. Discharge forecasts using combined SDF signals and persistence

Now, in addition to the SDF signals, we incorporate the forecast
point river gauged discharge data at the forecast initialization time
into the cross-validation forecast model to examine how much the
SDF improves forecast skill with respect to a persistence “forecast”. In
this context, a “persistence forecast” is the gauged-based observed dis-
charge time-lagged by the forecast lead time. This method relies on the
availability of near-real-time discharge observations at the forecast
point, with the expectation that the combined use of the observed dis-
chargewith the SDF should improve the forecast skill. Fig. 7 presents the
daily time series of discharge forecasts for selected flood years for Gan-
ges and Brahmaputra (similar to Fig. 5 above). The plots show that com-
bined use of persistence and satellite information clearly improved the
discharge forecast compared to satellite-only forecast presented above
(Section 5.1). The RMSE for each forecast lead time is presented next.

Also on a separate step, for comparison purpose, we fit the
Autoregressive Moving-Average (ARMA) model to the in-situ discharge
recorded at the forecast points of the Ganges and Brahmaputra rivers.
Based on the minimum Akaike Information Criteria (AIC), ARMA(7,1)
has been identified as the optimal model for both rivers. The ARMA(7,1)
d river discharge forecast at selected lead times shown against observation during the
The 2004 (6c) and 2007 (6d) forecasts for Brahmaputra at Bahadurabad are also shown.
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Fig. 8. a) The RMSE of persistence (PERS), Autoregressive moving-average (ARMA),
and combined SDF and persistence (SDF+PERS) discharge forecasts for Ganges and
Brahmaputra rivers. The SDF+PERS forecast is better than the PERS for both rivers and
the ARMA expectedly beats the PERS. The SDF+PERS forecast has lower RMSE than
ARMA for Brahmaputra, but this is not the case for Ganges. The SDF-only nowcasts (dark
points on the vertical axis) indicates that the satellite discharge estimate (see Fig. 5) is at
least as good as 7 day lead time forecast that is aided by in situ discharge. b) The root
mean square error (RMSE) skill score of SDF+PERS forecast versus forecast lead time for
the Ganges and the Brahmaputra Rivers discharge forecasts. The skill scores were calculated
for the whole time period of record (December 8, 1997 to December 31, 2010).
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refers to seven autoregressive and one moving average terms in the
ARMAmodel.

Fig. 8a shows the RMSEs of persistence-only (PERS), ARMA, and
combined SDF and persistence (SDF+PERS) forecasts for both rivers.
The SDF+PERS forecast error increases with lead time ranging from
1530 m3/s (7%) for 1 day lead forecast to 8190 m3/s (37%) for 15 day
lead time in the case of the Brahmaputra, and from 804 m3/s (6.4%) to
5315 m3/s (41.4%) for the Ganges. The SDF+PERS forecast has lower
RMSE compared to PERS forecast for all lead times for both Ganges and
Brahmaputra, and also the ARMA forecast is expectedly better than
PERS. For the Brahmaputra, the SDF+PERS have considerably smaller
error forecast compared to ARMA for lead times beyond 3 days indicating
that the passive microwave provides useful information for discharge
monitoring for the river. For the Ganges, however, the ARMA forecast is
better than SDF+PERS for shorter lead times up to 10 days and slightly
inferior beyond. The SDF-only nowcast (presented in Section 5.1 above)
has also been indicated on Fig. 8a. on the vertical axis (zero lead time).

The contribution of the SDF signal in the improvement of the forecast
skill can be shownby comparing against persistence.We further examine
these comparisons through RMSE skill scores (RSS), where the RSS is
calculated as

RSS ¼ RMSEf−RMSEpers
RMSEperf−RMSEpers

; ð3Þ

where RMSEf is the RMSE for the forecasts, RMSEpers for persistence, and
RMSEperf for a “perfect” forecast (with a value of 0 in this case). The
RMSE values for the forecast and persistence are as indicated in Fig. 8a.
Fig. 8b shows theRMSE skill score of the 1 to 15 day lead SDF+PERS fore-
cast with reference to persistence for both Ganges and Brahmaputra
rivers. The RMSE skill score varies from value of 1 (forecast with perfect
skill) to large negative number (forecast with no skill), and a value of
0 denotes that the forecast has no better skill than the reference forecast.
The microwave derived river flow signals improved the forecast RMSE
skill score of SDF+PERS from 5% to 15% for Ganges and from 7.5% to
17% for Brahmaputra across the 15 day lead time. For operational pur-
poses, the forecast skill could be further improved through a combination
of ARMA and satellite approaches; however the ARMA model requires
seven (equal to number of autoregressive terms) continuous past obser-
vations for the optimalmodel estimated above.While thiswould not be a
problem for sites with consistent reporting of discharge observations, it
poses more challenges for operational forecasting for river reaches with
intermittent reporting. Given the skill that we achieve through the use
of limited observations and satellite remotely sensed information (aka
SDF+PERS), this shows the power of utilizing remotely sensed informa-
tion to provide additional reliable skill to river flow forecasts for reaches
with reporting-limited data.

6. Water level from discharge forecast

To show the impact of SDF to enhance river stage forecasts, we
converted the river discharge forecasts to water level (river stage) by
inverting the flows using the rating curves, and compared them with
the ground based water level measurements made by the FFWC. Fig. 9
presents the RMSE of the water level forecast produced from satellite
signals and persistence (SDF+PERS) for monsoon season (June–
October). As described, above (also see Fig. 8a) the discharge fore-
cast from SDF+PERS is relatively better than those from PERS and
ARMA alone, and hence from now onwards we focus on presenting
the results of the SDF+PERS. The RMSE varies with forecast lead
time and more importantly differs from river to river. The RMSEs
computed for all days, including the low and high flow seasons, in-
crease with forecast lead time for both rivers. And it is found that
the error has consistently larger values for the Ganges compared
to the Brahmaputra.
One factor that could be contributing to the larger forecast error for
the Ganges compared to the Brahmaputra is that the river flow extent
estimated by the PMW sensors is translated to discharge (and water
level) more accurately for shallower-sloped river banks (such as the
Brahmaputra) than for steeper river banks, which is the relative case
when comparing the banks of the Brahmaputra with the Ganges near
their respective gauging locations. For rivers with shallower-sloped
banks, small variations in the river discharge produce proportionally
larger changes in river width and, hence, the variation can more easily
be detected by the PMW sensors. The comparison of the forecast error
for different flow regimes is discussed next.

The magnitude of the flow also has an impact on the accuracy of the
river flow extent detected by the PMW. Fig. 10a and b denotes how the
RMSE of the water level forecast for monsoon season depends on the
flow magnitude for the Ganges and the Brahmaputra respectively.
Note that these forecasts are made based on the combination of the
SDF signals detected by PMWand persistence as discussed in the earlier
sections. The SDF signals are estimated from the difference in micro-
wave emission of water and land surfaces and are sensitive to the
changes in the area of land covered with water. Therefore, it is to be
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Fig. 9. Root mean square error (RMSE) of monsoon water level forecast for the Ganges and
the Brahmaputra Rivers shown for different forecast lead times. The error increaseswith lead
time for both rivers, and it is larger for the Ganges compared to the Brahmaputra.

Fig. 10. a. RMSE of water lever forecast for Ganges River shown for different flow regimes
duringmonsoon season (June–October). Thewater level is obtained from discharge forecast
using the rating curve equations. The water level forecast errors decrease with increasing
flow magnitude indicating that the PMW sensors detect floods more accurately when the
river overflows the bank, inundating wider area, as opposed to low flow where the flow
remains in the river bank. b. Same as Fig. 10a except for Brahmaputra River.
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expected that highflowshave a tendency to extend over the river banks
covering, a large area and, as a result, a stronger river flow signal is
detected. Fig. 10a confirms this scenario for the Ganges. The forecast
error is higher for low flows (lower percentiles) and it has a decreasing
trend with increasing flow magnitude. This is the case for all forecast
lead times. Results for Brahmaputra (Fig. 10b) generally indicate similar
trends: the forecast errors are smaller for high flow volumes, particular-
ly for 50 to 90 flow percentiles of the monsoon season. The RMSE picks
up for the highestflowvolumes (largest percentile) due to, as seen from
the time series, the fact that the peaks are mostly not captured by the
forecast. The heteroscedastic behavior (particularly having bigger vari-
ance for large flows) of the gauging and rating curve errors also could
contribute to the large error for the highest flow percentiles.

However, besides geomorphological considerations, another factor
why the low flow Ganges errors are more appreciable than those of the
Brahmaputra concerns the issue of water diversions, as discussed in
Section 2. We assume that this disparity is attributed to the fact that the
Ganges is affected by human influences through construction of irrigation
dams and barrages for water diversions in India (Jian et al., 2009), while
the Brahmaputra is less affected by man-made impacts, as there are no
major hydraulic structures along its main stem as of 2010.

Overall, the PMW based water level forecast provides comparable
forecast errors with satellite altimetry based forecasts (such as for
example Biancamaria et al., 2011) but with the advantage of higher sam-
pling repeat periods (1 day versus 10 days). The PMW data can be com-
bined with altimetry based water level estimates to further improve the
accuracy of river stage forecast.

7. Conclusion

This study shows that flow information derived from passive micro-
wave remote sensing is useful for near-real time river discharge forecast-
ing for the Ganges and Brahmaputra Rivers in Bangladesh. It presents a
different approach to the satellite altimetry based water level forecast
performed by Biancamaria et al. (2011). The current method uses multi-
ple (more than 20 for each river) upstream river reach estimates from a
selected frequency band of a passivemicrowave signal such that noise in-
troduced by cloud cover is minimal. The remote sensing observational
data (SDFs) are well correlated, albeit with different patterns between
the two basins, to the ground flow measurements and are capable of
tracking river flow wave propagation downstream along the rivers. The
Fig. A1. Map showing the sites selected by the cross-validation regression model [Section 4
(iii)] for each lead time forecast. Thenumbers on thehorizontal axis refer to sites as described
in Table 1,with increasing FPL from left to right.Meanwhile, the numbers on the vertical axis
denote the lead time forecast and the nowcast is represented by lead time of ‘0’. The color
map shows the number of times (including the lagged observations) data from a SDF site
is used in the regression model. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. A2. Same as Fig. A1 except for Brahmaputra River.
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correlation pattern depends on the location, flow path length and lead
time indicating that the local ground conditions such as river geometry,
topography, precipitation spatial scale, and hydrologic response of the
watershed should be taken into consideration before using the satellite
signal for river flow application. The relative importance and influence
of each of these factors needs further exploration.

The SDF signals are used in this paper in cross-validation regression
models for river flow nowcasting and forecasting at 1–15 day lead
times. The skill of the forecasts improves at all lead times compared to
persistence for both Ganges and Brahmaputra Rivers. The forecast error
is smaller for the Brahmaputra compared to the Ganges, and also the ac-
curacy improves for high flow magnitudes for both Rivers. This makes a
substantial proof of utility of passive microwave remote sensing for
flood forecast applications in data-scarce regions. However we should
point out that one needs to identify the appropriate locations where the
riverwidth estimates are correlatedwith the gaugemeasurements before
using them for such applications.When the river flow is confined and the
discharge variationsmainly results inwater lever change, the information
obtained from riverwidth estimatesmay not be useful to detect themag-
nitude of river flows, inwhich case altimetrywater level data is the better
option. However, the PMWof the frequency bandminimizes cloud cover
effects, allowing daily observations, which is not currently possible for al-
timetry data. It is clear that passive microwave remote sensing of river
discharge can play a useful role in measurements of upstream flow vari-
ation, and as a river flowmeasurement, it would be useful to couple with
hydrologic models in a data assimilation and model calibration frame-
work for river flow forecasting purposes.
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Appendix A. Sites selected using cross-validation model

For each forecast lead time, the sites selected by the cross-validation
approach, described earlier under Section 4 (iii), are presented in Figs.
A1 and A2 for Ganges and Brahmaputra respectively. For the Ganges
(Fig. A1), twelve out of the total of 22 sites have not been used at all
for 0–10 days lead time forecast, and a maximum of 3 sites were used
for 7–10 days lead time forecast. Note that the forward-selection cross-
validation approach selects which sites produce the “best forecast”
based on theminimized least square error. Almost all of the downstream
sites (with exception of a few stations) in India were included for short
time forecasts of the Brahmaputra, while some of the upstream sites
located in China were used for long lead times. The cross-validation
model completely disregards the 5 downstream sites for forecast lead
times beyond 5 days. The middle sites, particularly “11579 (9)” to
“11583” (11) were chosen for up to 13 day lead time forecast. Overall,
four out of a total of 23 sites were not used at all for any forecast or
nowcast of the Brahmaputra.
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