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3.1. INTRODUCTION

Standardized methods for flood risk evaluation in the 
United States were developed by the United States 
Geological Survey over more than a century [Klingeman, 
2005; Wahl et al., 1995]. They use an extensive network of 
river gauging stations and associated time series of annual 
flood peak discharge; many of these extend for 50–100 
years. To meet regulatory and insurance requirements, 
flood risk assessments must be not only objective and 
scientifically defensible, but also uniformly applicable 
across highly variable hydrological regimes. The results 

are commonly subject to legal challenges as property 
owners contest the level of risk assigned; consistency of 
method is thus critical. Through these standard methods, 
risk is modeled: a flood discharge of particular calculated 
recurrence interval is routed through the channel and 
across the landscape via regulatory agency‐approved 
hydrodynamic models such as HEC‐RAS [FEMA, 2002].

Many developed nations outside the United States have 
similar risk evaluation methodologies. Quite commonly, 
a “100‐year” discharge and associated floodplain are 
defined: this floodplain is the land area along a river 
where, at its margins, a 1% annual exceedance probability 
is calculated for inundation by floodwater (interior por
tions may experience much higher inundation frequencies). 
Thus, the probability Pe that one or more floods occurring 
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during any period will exceed a given flood threshold can 
be expressed, using the binomial distribution, as

 P Te
n

1 1 1– – /  (3.1)

where T is the threshold return period (e.g., 100 years) 
and n is the number of years in the period. For floods, the 
event may be measured in peak m3/sec or height; most 
commonly the calculation uses a time series of annual 
flood peak discharges [Flynn et al., 2006; Klingeman, 2005].

In regard to this approach, many developing nations 
have a less‐developed hydrological measurement infra
structure, and relatively few reliable in situ records of 
past flood peak discharges. The need for reliable flood 
hazard information may be even more critical, however, 
as agricultural and manufacturing economies expand, 
and population growth and migration increase settlement 
of  floodplain lands [Brakenridge et al., 2016b]. In these 
locations, a different kind of  hydrological modeling 
of flood hazard, generally on a relatively coarse spatial 
scale and without abundant stream flow records, is one 
approach toward addressing the need (as discussed else
where in this book). Such approaches do not require 
in  situ flood measurements, but instead reconstruct 
the  flood history from climatological data input and 
topography‐assisted modeling.

The present chapter offers a third approach: combined 
analysis of (1) a 1998–present time series of satellite 
passive microwave data that records flood hydrographs at 
selected measurement sites [Brakenridge et al., 2012a; De 
Groeve et al., 2015a; Van Dijk et al., 2016] and (2) optical 
sensor imaging and mapping of flood events, also 
sustained over a similar time span.

These together produce an inundation record, which is 
coupled to the microwave information in order to assign 
exceedance probabilities to the mapped inundation limits.

Using this approach, standard flood probability distri
butions can be applied to a globally consistent observa
tional period of record of nearly 20 years (1998–present). 
Note that a standard rule of thumb for extrapolation of 
flood probability distributions is 2x: if  the period of 
annual peak flow record is 20 years, the 40‐year event can 
be estimated. Thus, these records should allow estimation 
at‐a‐site of this discharge, and some mapped floods, if  
they are the largest of record, will be assigned recurrence 
intervals in excess of  20 years. Even a reliable 25‐year 
floodplain (annual exceedance probability = 4%) is very 
useful risk information in any region where risk 
information is otherwise lacking, and these geospatial 
data can be made quickly available via the methodology 
and data described here.

Orbital remote sensing in the late 20th and early 21st 
centuries has provided a rich archive of  actual flood 
inundation extents. For such data, see for example 

Brakenridge et al. [2016a]. Some nations already use 
satellite‐based maps of  any extreme flood event for 
floodplain regulation, on the simple principle that what 
has occurred may occur again [de Moel et al., 2009]. 
Explored here is a globally applicable strategy, however, 
toward transforming such mapped large flood infor
mation into quantitative flood risk. Such maps can, in 
turn, also be used to validate and calibrate flood risk 
maps created using modeling approaches.

3.2. MICROWAVE RADIOMETRY 
FOR MEASURING RIVER DISCHARGE

As noted, once a large flood has been mapped from 
space, the need is to constrain how large/how rare the 
mapped event is. In this regard, satellite microwave 
sensors provide global coverage of the Earth’s land surface 
on a daily basis and, at certain wavelengths, without 
major interference from cloud cover. Gridded data prod
ucts, updated in near real time, are available [De Groeve 
et al., 2015a]. The products are low in spatial resolution 
(best available resolution for these global coverage sensors 
is 8–10 km). However, using a strategy first developed 
for wide‐area optical sensors [Brakenridge et al., 2003b, 
2005], sensors such as AMSR‐E, AMSR‐2, TRMM, and 
GPM (Fig. 3.1) can measure river discharge changes at 
certain locations by monitoring the surface water area 
signal from individual image pixels over time.

The method is simple in concept: as rivers rise and 
discharge increases, water area within the single‐pixel 
satellite gauging sites (~10 km × 10 km), as selected from a 
gridded global image product (Fig.  3.2), also increases 
[Brakenridge et al., 2007, 2012a; De Groeve et al., 2006, 
2015b; De Groeve and Riva, 2009]. This water area change 
tracks river width and discharge variation in a manner 
analogous to how stage (river level) tracks discharge at in 
situ gauging stations. The relationship of flow area to dis
charge is via the continuity equation

 Q wdv  (3.2)

where Q is water discharge in m3/sec, w is flow width, d is 
water depth, and v is water flow velocity (m/sec), as 
integrated across the flow cross section. As discharge 
increases, and provided the channel is not rectangular in 
shape, flow width increases at a cross section, and flow 
area increases overall within a river reach, in this case, a 
10 km2 measurement site.

Note that a ~10 km 37 GHz image pixel in these gridded 
products, centered over a river, is commonly “mixed”; 
it  includes both water (low emission) and land (high 
emission). As the proportion of  water area rises, the 
net emitted radiation declines. The microwave signal is 
thus very sensitive to flow width changes. The physical 
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mechanisms are explored elsewhere for this frequency 
radiation (e.g., reasons for low emission from water and 
much higher emission from land, Brakenridge, et al. 
[2007]. However, the same methodology can also use the 
near IR bands of optical sensors: again, water surfaces 

provide much lower radiance than adjoining land surfaces, 
but cloud cover will intermittently interfere [Brakenridge 
et al., 2005; Van Dijk et al., 2016].

As discharge along a river increases, the flow area, as 
seen from above, should generally increase monotonically 
(hysteresis effects can locally occur, however). Although 
in situ gauging stations instead commonly use stage, there 
is no a priori reason why this is a more sensitive flow 
monitor. If  river channels are not rectangular in shape, 
discharge variation is expressed by both stage and width 
variations; and, along many rivers, width variation with 
flow is quite robust. Also, since a reach instead of a single 
cross section is monitored, the sensitivity of the flow area 
measurement depends on the complete suite of river/
floodplain morphologic features within the reach, and 
including in‐channel bars and low floodplain surfaces, 
slip‐off  slopes along meander bends, braided channels 
and islands, and floodplain oxbow lakes, which are 
connected to the main channel. As for in situ stations, the 
best satellite gauging sites thus must be carefully selected, 
in this case for reaches where surface area changes sig
nificantly over the full range of  in‐channel and flood 
discharges.

One implementation of satellite microwave‐based flow 
area information for operational hydrological measure
ments is the River Watch processor at the Dartmouth 
Flood Observatory (DFO), University of  Colorado 
(http://floodobservatory.colorado.edu/). River Watch uses 
the NASA/Japanese Space Agency (JAXA) Advanced 
Scanning Microwave Radiometer (AMSR‐E) band at 
36.5 GHz, the NASA/Japanese Space Agency TRMM 
37 GHz channel, and 37 GHz data from the new AMSR‐2 
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Figure 3.1 Temporal coverage, 1998 to present, of passive microwave sensors built and operated by NASA and 
by JAXA (Japanese Space Agency). Each satellite provides daily or near‐daily imaging of the globe.

Figure  3.2 Location of Satellite Gauging Site DFO # 30 over 
Ayeyarwady River and its floodplain in Myanmar. The site is a 
single pixel selected from the JRC grid; pixel is 10 km in size and 
produces the daily M value. The 95th percentile of the highest 
(driest and warmest) values from a 9 x 9 pixel array in the 
surrounding area produces the background calibration C value.
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and GPM sensors. The discharge estimator (the remote 
sensing signal) is the ratio of the daily M, microwave 
emissivity from a measurement pixel centered over the 
river and its floodplain, and a calibrating value (C), the 
95th percentile of the day’s driest (brightest) emissivity 
within a 9 pixel × 9 pixel array surrounding the measure
ment pixel (Fig. 3.2). The 95th percentile excludes out
liers due to sensor noise while still providing a suitable 
nonhydrologic background measurement. At ~37 GHz, 
C/M is primarily sensitive to changing surface water area 
within the M pixel; using the ratio removes other emission 
variability (e.g., from surface temperature) that affects all 
pixels in the area [De Groeve et al., 2006, 2015b; De Groeve 
and Riva, 2009].

The time series at sites within reach of TRMM (<50° 
latitude) begin in January 1998 (Fig. 3.1). Then AMSR‐E 
data (merged with the TRMM information) is added 
when such becomes available in mid‐2002. The series 
continues using TRMM, only, during the AMSR hiatus 
between AMSR‐E termination and initiation of AMSR‐2; 
Fig.  3.1) and then it adds AMSR‐2 and GPM (now 
merging the two data streams, into 2016). The microwave 
record at higher latitude sites begins in mid‐2002 (follow
ing launch of AMSR‐E), and there is a data gap in 2012–
2013 between the termination of AMSR‐E and initiation 
of  AMSR‐2. The gridding algorithm that produces the 
global daily images is performed at the European 
Commission’s Joint Research Centre (JRC); the original 
data are near–real‐time swath information from each 
sensor provided by NASA and/or JAXA. A JRC technical 
document provides further information including data 
sources [De Groeve et al., 2015b].

JRC produces a daily global grid at 10 km (near the 
equator) pixel resolution, and publishes daily ratio data 
for fixed pixels within that 4000 × 2000 pixel grid. At lower 
latitudes, the coverage is less than daily from AMSR‐E 
and AMSR‐2: the latest River Watch version uses a for
ward running, 4‐day mean of the daily results to avoid 
such data gaps. Because river discharge exhibits strong 
temporal autocorrelation, such averaging also provides 
useful smoothing and noise reduction. Also, when mul
tiple samples for one pixel are available in 1 day, the latest 
sample value is used at JRC in the gridded product.

At DFO, the latest ratio data from the JRC are 
ingested twice each day, and the web‐hosted displays 
and calculated discharge data for each satellite gauging 
site are then updated. Each site display includes two 
(html) online web pages: one provides plots of  the 
results but also some tabular data (e.g., http://
floodobservatory.colorado.edu/SiteDisplays/30.htm). 
The second presents the signal/discharge rating curve 
(see below) and access to the complete record of  satellite‐
measured discharge (http://floodobservatory.colorado.
edu/SiteDisplays/30data.htm).

For comparison purposes, a reference 20th percentile 
of the measured discharge for each day of the year is also 
provided and provides a useful low flow threshold.

3.3. PRODUCTION OF SIGNAL/DISCHARGE 
RATING CURVES

As is the case for river stage measured at in situ gauging 
stations, independent information is needed to translate 
the discharge‐sensitive observable (in this case, water 
surface area) to the corresponding discharge value. The 
transformation is accomplished by an empirical rating 
equation that matches the signal to independent discharge 
information. For River Watch, the calibrating discharge 
values are obtained by runs of  a global runoff  model 
(WBM) [Cohen et al., 2011]. Five years (2003–2007) pro
vide abundant daily model output for calibration; addi
tional years comparing model and remote sensing could 
further refine and possibly extend the resulting rating 
curves (if  larger modeled flows occur than previously). 
The WBM model, also using a global grid resolution of 
~10 km, inputs climate and land surface variables and 
produces daily river discharge values for these years at 
each measurement site. Earlier work determined that 
adequate calibration information for each site’s rating 
curve can be obtained by comparing just the monthly 
daily maximum, minimum, and mean values, so n = 180 
for the 5‐year run [Brakenridge et al., 2012a; Cohen et al., 
in preparation, 2013; Cohen et al., 2011]. Figure 3.3 pro
vides sample results at one site as a scatter plot; Figure 3.4 
illustrates the same data in time‐series form. In the latter 
case, the signal data are first translated to discharge 
values using the scatter plot’s rating curve in order to 
show the two time series on the same scale.

Without other information, it is not possible to deter
mine which departures in a smooth monotonic relation in 
Figure 3.3 is from errors in the remote sensing signal and 
which from errors in the model. For the purpose of the 
flood risk assessments to be described here, however, the 
correlation of independent model to remote sensing 
further establishes that the microwave water area signal 
is indeed responding to discharge variation. Also, and 
whether or not WBM is strongly affected by model bias 
and is reporting consistently too‐high or too‐low dis
charge numbers, such bias will not affect the risk proba
bilities. Figure  3.5 provides the entire remote sensing 
daily time series at this satellite gauging site, and using 
the rating curve in Figure 3.3. Because the ratio signal is 
responding to surface water (and flooding) extent within 
the M pixel, the relative heights of the flood hydrographs 
shown should accurately reflect the true time series of 
flooding there: regardless of  any model bias in the dis
charge calibration. This result then provides the essential 
information needed for flood hazard mapping: a method 
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Figure 3.3 Scatter plot comparing WBM‐modeled daily discharge over a 5‐year period (January–December monthly 
daily maximum, minimum, and mean discharges) to the C/M ratio for River Watch site 30. The relationship is 
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Figure 3.4 Same data as in Figure 3.3, but arranged as time series of (a) maximum, (b) mean, and (c) minimum 
discharge values. The red line shows the model results and the blue line is the remote sensing as transformed by 
the rating equation in Figure 3.3. (See electronic version for color representation.)
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Figure 3.5 Daily (4‐day forward running mean) discharge values for satellite gauging site 30 on the Ayeyarwady River. 
The low flow threshold (green line) is the 20% percentile discharge for each day; the flood thresholds use recurrence 
intervals computed using the Log Pearson III distribution and the annual maximum daily values. Major flooding in 
2015 approached the calculated 5‐year recurrence interval; the flood of record, in 2004, was produced by a very 
damaging tropical storm [Brakenridge et al., 2016b]; flooding here exceeded the 25‐year threshold. (See electronic 
version for color representation.)
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to constrain the observed frequency/exceedance proba
bility of an imaged flood.

There is an important factor that may change the exact 
return periods to be assigned to the annual flood peaks 
shown in Figure  3.5. That is, the straight line rating 
equation shown in Figure 3.3 clearly produces somewhat 
too high discharges for the highest water area signal 
values (Fig. 3.3). Adjusting the rating equation to flatten 
the slope would produce somewhat smaller flood peaks 
and also alter the corresponding return periods for the 
larger events. This dependency indicates the importance 
of developing the highest quality rating curves (the same 
need exists for in situ gauging stations).

3.4. ASSESSING RIVER WATCH ACCURACY

As noted, the accuracy of the satellite gauging site 
results depends in part on river and floodplain mor
phology. Other site‐specific factors such as vegetation are 
also important [Revilla‐Romero et al., 2014]. Using both 
the model and the remote sensing results, without any 
ground‐based information, it is also possible to calculate 
useful statistics comparing the overall accuracy of the 
discharge time series results. For example, flow areas may 
not change very much in response to discharge along 
some reaches, in which case the expected signal range is 
small compared to the daily noise that can be induced by 
other factors (see below). Two descriptive statistics for a 
sample of sites in Myanmar along the Ayeyarwady and a 
major tributary (the Chindwin River) are provided as 
Table  3.1 to illustrate their utility and application. The 
“signal/model agreement” is a simple ranking and 
classification of the signal/model least squares regression 
(coefficient of determination r2) results, as in Figure 3.3 
(either for straight line fits or second order polynomials 
that can better match the data). Among different sites, 
higher r2 indicates a stronger correlation; it is more likely 
that the remote sensing signal is accurately tracking river 
discharge variation if  it is strongly correlated to modeled 

discharge output. These thresholds were chosen to group 
the r2 values into classes: > 0.7, Excellent; 0.6–0.69, Very 
Good; 0.5–0.59, Good; 0.4–0.49, Fair; < 0.4, Poor.

Second, the sites vary in maximum signal range over 
the period of record (in Table 3.1, from a low of 0.08 to 
0.20, or more than 2‐fold). They also vary in the average 
daily signal change (from a low of 0.08 to 0.14, or nearly 
2‐fold). Thus, some sites may exhibit a very small total 
range, but significant daily variation, much of which may 
be noise; others a large total range and relatively small 
daily variation (stronger signal/noise). The ratio provides 
a consistent “signal strength” measure that can be similarly 
classified from excellent to poor. The following thresholds 
were chosen to group the signal/noise values into classes: 
> 0.8, Excellent, 0.7–0.79, Very Good, 0.6–0.69, Good, 
0.47–0.59, Fair, < 0.47, Poor.

The two metrics separately provide an objective 
assessment of how well the remote sensing agrees with the 
modeling, and how strongly the signal is recording dis
charge variation compared with the day‐to‐day variation 
that may be mainly noise along many rivers. Known 
sources for noise may include (1) geolocation error (the 
geographic footprint of  the swath image data incorpo
rated into the gridded global product varies slightly); 
(2)  sensor noise (the radiance measurements have finite 
precision); and (3) nonsurface water area effects on the 
ratio (so any differential environmental factors affecting 
the M pixel over the river and the driest pixels in the C 
calibration array.

Where ground gauging stations and satellite gauging 
sites are colocated, the remote sensing can also be directly 
calibrated to discharge directly via the ground information. 
Selected US sites (e.g., Fig. 3.6) therefore compare model‐
based and ground station‐based rating curves, providing 
an assessment both of  model bias and of  the overall 
accuracy of the River Watch information. In the example 
shown, the river channel is meandering, but only 45 m 
wide; thus also demonstrating that the River Watch 
method is not limited to large rivers but instead requires 

Table 3.1 Summary of Microwave Discharge Measurement (River Watch) Site Characteristics and Accuracy for Sites Along 
the Chindwin (108 and 23) and Ayeyarwady (26, 29, 30)

Site Signal/Model Agreement Signal Range and daily Discharge Range Signal/Noise r2

108 Very Good 0.11, 0.008 21,091 m3/s Good 0.66
 23 Good 0.08, 0.009 25,507 m3/s Fair 0.57
 26 Very Good 0.09, 0.013 17,242 m3/s Fair 0.67
 29 Good 0.12, 0.014 35,891 m3/s Fair 0.57
 30 Very Good 0.20, 0.013 35,245 m3/s Very good 0.70

Note: The signal range statistic records the total measured variability of the discharge‐estimator signal; larger values indicate a 
site where the remote sensing signal is more sensitive to discharge variation. The noise statistic refers to the average signal 
variability on a daily basis; larger values indicate more nonhydrologic noise. The r2 values are coefficients of least squares 
regression of the independent WBM modeling discharge results to the remote sensing signal (over 5 years, 2000–2010, 
monthly daily maximum, mean, and minimum values, n = 180).
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only floodplain/channel reaches where total surface water 
extent changes robustly as discharge changes.

3.5. SATELLITE GAUGING SITE SELECTION

There are several factors affecting the selection of gauging 
locations. It is important that the M pixel be located to avoid 
saturation (complete filling of the 10 km measurement pixel 
by water) during flood events. It is also necessary that the 
pixel monitors a relatively uniform stretch of river without 
major tributary junctions, or nearby streams, or other vari
able water bodies that may change in surface area without 
directly indicating discharge changes at the site intended. 
The measurement site can, however, include such river‐
connected features as oxbow lakes and other water‐filled 
negative relief floodplain features [Lewin and Ashworth, 
2014] that are connected to the river: their expansion or con
traction is responsive to local river discharge changes.

Note that there may be significant time lags and hyster
esis between the filling and draining of floodplains and 
the discharges traversing the trunk stream channel 
[Brakenridge et al., 2007]. Consider in this regard that the 
microwave method is not using reach water surface area 
as a simple proxy for river flow width. Instead, a 10 km × 
10 km parcel of  floodplain and channel land with 
interconnected water features is recording discharge vari
ation. The sites must be visually inspected in map form to 
ensure that, in each case, the flow area changes relate to 
the river being monitored and to evaluate the potential 
influence of time lags and also flow control structures 
along the river. Another important confounding factor 
is irrigated agriculture, especially rice paddies. Such 
farming, in either the M or the C pixel, can produce an 

entirely erroneous change in the signal ratio as regards 
discharge; instead the signal records irrigation changes.

Despite the requirement for careful evaluation of each 
potential river measurement site, there are at least several 
thousands of additional River Watch sites that could be 
established and beyond the ~300 now being published 
online (http://floodobservatory.colorado.edu/Discharge 
Access.html). The microwave ratio signal information is 
already available for each cell of the global grid. As well, it 
is possible to use observed site numerical correlations to 
known discharge variation en masse: to select, via the degree 
of correlation, the best sites to examine further [Van Dijk et 
al., 2016]. Through this satellite observational method, in 
situ gauging stations are not required to consistently eval
uate flood risk along satellite‐monitored river reaches and 
floodplains, at least for predicted recurrence intervals rang
ing up to approximately 40 years.

3.6. FLOOD MAPPING FROM OPTICAL 
SATELLITES

One useful method for mapping floods and flood 
hazard uses the two NASA MODIS sensors (aboard the 
satellites Terra and Aqua). These provide 36 optical 
spectral bands; most bands offer spatial resolution of 
1000 or 500 m. However, two bands, in the visible and 
near‐IR portions of the spectrum (620–670 nm, band 1, 
and 841–876 nm, band 2) provide spatial resolution of 
250 m; band 2 in particular strongly differentiates surface 
water from land. Such information has been used to map 
the inundation extents reached by floods at many loca
tions worldwide [Brakenridge et al., 2003a; 2012b; Policelli, 
2016] (Fig. 3.7). All of the (twice daily, global coverage) 
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Figure 3.6 Model‐ and ground station‐based rating curves for Trinity River, Texas, River Watch site 446 in the 
Dartmouth Flood Observatory/University of Colorado array. The WBM model was used to produce the black line 
rating curve, which is fit to widely scattered data. A colocated USGS gauging station was used to produce the red 
line rating curve, with much better correlation to the remote sensing. Comparison of the two curves indicates a 
WBM model positive discharge bias increasing with higher discharges. Also, at this location, the WBM model 
may perform relatively poorly because it does not incorporate upstream river control structures. (See electronic 
version for color representation.)
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image data since late 1999 are available in various formats 
in public NASA and other data archives.

As floods evolve, daily mapping of  the inundation 
extents provides a near–real‐time indication of  flood 
severity. Flooding can be compared to previously 
mapped water, such as winter low flow conditions and 
typical annual high water (Fig.  3.7). Thus, accurate 
“flood” mapping does not only involve mapping 
maximum flood extent reached by an event, but also 
comparison to water extent that is typical for the same 
time of  year. Figure 3.7 illustrates the large amount of 
normal annual water variability in a summer monsoon‐
affected region, which must first be masked before 
unusual flooding can be discerned. Mapping over some 
years can thereby provide both increasingly compre
hensive flood hazard information (more probability of 
imaging and mapping the unusual high floods) and 
better information concerning what are typical and 
atypical high‐water conditions.

3.7. REMOTE SENSING‐BASED FLOOD 
HAZARD QUANTIFICATION

Flood inundation mapping can be coupled with 
either ground‐ or space‐based river gauging to con
strain the frequency of  the mapped flood. Thus, using 
river discharge time series, standard flood frequency 
methods [Flynn et al., 2006] can analyze the series of 
annual peak discharges within the period of  record to 
evaluate flood recurrence intervals/annual exceedance 
probabilities for any particular event. In the United 
States, the Log Pearson III probability distribution 
is  used. There are other potential issues involved in 
 creating a risk assessment at a gauging station, particu
larly for large, rare events, and including the possibility 
to apply skewness coefficients using regional data and 
within the standardized Log Pearson III or other distri
bution functions. These techniques are well described 
in the literature, and provide various methods for 

0 50 100

Kilometers

Figure 3.7 MODIS remote‐sensing‐produced map of major 2015 flooding in Myanmar (light red), and also the 
typical annual high water (2014, light blue). Recurrence intervals at the River Watch measurement sites for the 
2014 “flood” are approximately 1.5 years. Dark blue is a permanent water mapped by the Shuttle Water Boundary 
Data (https://lta.cr.usgs.gov/srtm_water_body_dataset) from February 2000 and represents typical winter surface 
water extent. (See electronic version for color representation.)
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extending and/or extrapolating the data provided by any 
single river peak discharge time series.

In any case, however, the need for spatial extrapolation 
over a flood‐prone landscape remains. A single image of 
a large flood event shows the inundation extent over 
long reaches of  floodplain, and the local exceedance 
probability may vary significantly with location. The 
probability estimates obtained from a time series at a 
discharge time series measurement site strictly apply only 
to flooding at that site. This poses an interesting contrast 
to model‐based risk mapping (see other chapters in this 
book): such models predict inundation from a specific 
recurrence interval and discharge value in a spatially con
tinuous manner and using information about channel 
and floodplain morphology and flow routing equations. 
A flood image instead directly provides the inundation 
extent, without knowledge everywhere of the recurrence 
interval.

In flood modeling, the spatial continuity issue is implic
itly addressed by interpolation. For example, the 20‐year 
flood at site A may be calculated at 12,000 m3/sec and that 
at downstream site B, 16,000 m3/sec. At a river location 
midway between the two stations, and if  there are no 
major tributary junctions, a 20‐year discharge of 
14,000 m3/sec may be modeled for inundation prediction 
there (in grid‐based modeling, this interpolation is at the 
grid resolution). Borrowing from this approach, if  the 
satellite image maps a flood at both station locations, 
with a calculated r of 12 years at A but 18 years at B, 
100 km downstream, the imaged flood limits may have, in 
this case, a range of r somewhere within 12 to 18 years. 
The risk values and map information then become even 
more complex, as additional floods of different return 
periods are mapped. Such complexity would not address 
the need to identify in a consistent way floodplain land 
areas at a particular risk of flooding.

A more practical approach is to instead divide the 
flooded drainage network into a series of segmented river 
reaches, each monitored near its midpoint by either a 
ground‐based or space‐based discharge measurement site 
(Figs. 3.8 and 3.9). Under this approach, the associated r 
is assumed to apply to the inundation extent throughout 
the reach, and larger or smaller floods imaged and 
mapped for the same reach will each also have specific 
recurrence intervals. In this case, no attempt is made to 
interpolate between river discharge measurement sites, 
but instead risk maps are prepared separately for each 
monitored river reach. A combined mapping and mod
eling approach, wherein the modeling provides the conti
nuity and ability to map a particular recurrence interval 
flood, and the remote sensing‐based mapping provides 
the observational validation, reach by reach, appears to 
be the most productive way forward for large‐region 
mapping of flood risk [De Groeve et al., 2015a].

3.8. CONCLUSION

The outlined approach couples microwave and optical 
remote sensing to produce quantitative flood risk maps. 
This chapter describes how the two can be integrated: the 
increasingly comprehensive global satellite map record of 
flood events can be matched to exceedance probabilities 
from microwave discharge records to produce risk maps 
without any in situ information. For the two examples 
provided, the period of satellite‐microwave‐observed 
flood discharges begins in 1998 and is now approaching 
20 years. By adding the associated microwave record, the 
reach‐level flood maps prepared from MODIS optical 
remote sensing show not only actual mapped floods but 
also the associated annual exceedance probabilities. As is 
the case for flood modeling products, these maps are a 
quantitative guide to future risk.

There is also an important additional use of such maps: 
for near–real‐time flood inundation prediction. Unless 
channels and floodplains have changed since previously 
mapped floods (e.g., through levee construction or 
removal), similar flood discharges in the future along the 
monitored reaches should continue to produce similar 
inundation extents. This presents an observational rather 
than modeling path forward for flood inundation predic
tion. That is, if  a particular flood hydrograph were 
measured, either via an in situ gauging station or the 
satellite microwave approach, and the resulting floodplain 
inundation were also observed and mapped, then the 
map could be used to understand what land areas will 
be submerged when that discharge is once again attained. 
A library of inundation maps could be assembled, and 
referred to when flooding again occurs. Note however, 
that flood hydrograph volume, as well as simply peak dis
charge and stage, may also affect maximum inundation 
extent, and especially over large floodplains. Flooded area 
is a relatively new hydrological observable that is made 
possible via orbital remote sensing. Productive research 
can now be accomplished relating different aspects of 
flood hydrographs to the societally and ecologically rele
vant variables of inundation extent and duration.

This satellite‐based flood risk method is presented in 
outline form here, but there are complexities involved in 
its practical implementation and validation. For example, 
shortening the reach lengths and obtaining data from a 
denser array of discharge measurement sites would 
increase the accuracy and detail of risk mapping: by test
ing and comparing individual measurement site results. 
As in many other areas of work, replication of the hazard 
results obtained are important for the results to be 
trusted. Also, consider that there may be relatively large 
step changes between contiguous reaches in the calcu
lated return periods for a particular mapped flood, for 
example, due to the influence of  tributary discharges. 
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This could pose a challenge in the preparation of regional 
maps, but also reflects the reality of the actual flood history 
and future risk. If  regional maps are needed, another 
useful strategy may be to couple the described, reach‐

specific observational approach with regional and even 
global flood hazard modeling methods such as are 
described in other chapters in this book. For this, continuous 
spatial coverage via remote sensing is not needed (it is 

(a) (b)

(c)

Figure 3.8 Recurrence interval and peak discharge estimates for River Watch site 30 along the lower Ayeyarwady 
River. The microwave measurement site is defined by the white 10 km square. Inundation for (a) a normal winter 
flow of 6253 m3/sec on 11–22 February 2000; (b) observed via MODIS at 250 m spatial resolution, flooded area 
for a typical summer monsoonal “flood,” r = 1.5 years (27,138 m3/sec, observed 2013); and (c) observed via 
MODIS again, flooded area for major flooding in 2004, r = 24 years (50,579 m3/sec. Note that during this flood, a 
major distributary to the east (the area is at the head of the Ayeyarwady delta) is also flooded.
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(a)

(b)

(c)

Figure 3.9 Recurrence interval and peak discharge estimates for River Watch site 26 along the upper Ayeyarwady 
River. Inundation for (a) a normal winter flow of ~200 m3/sec in February 2000; (b) a typical monsoon season 
flood, recurrence interval of 1.1 years, ~9000 m3/sec, in 2002; and (c) inundation during a rare flood, recurrence 
interval of 21 years, 18,200 m3/sec, in 2013.
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provided by the modeling). Instead, the discrete reaches 
where risk is characterized by remote sensing can provide 
critical model validation.

Finally, there is evident utility in focused attempts to 
image and map the very largest flood events in the period 
of record (e.g., the 2004 flooding in Figs. 3.5 and 3.7). Such 
work provides an unambiguous mapped hazard area from 
the most infrequent and often exceptionally damaging 
large events, and now their expected frequency can also be 
approximately constrained. Indeed, these satellite images 
and associated maps need to be preserved as memorials for 
posterity and in the same way that many communities 
across the globe preserve high water marks from historic 
extreme floods [Davies, 2014]. Given a changing climate, 
and also changes in watershed land cover and other char
acteristics, there is a lack of support for assuming temporal 
stationarity in the series of annual peak discharge [Milly 
et al., 2008]. Yet it is only by using this assumption that 
probability distribution‐based exceedance probabilities 
can be calculated. This cautions against mapping flood 
hazard as a static quantity. Instead, quantitative flood risk 
maps can be used as a starting point, and predictive models 
that provide information for how flood regime may change 
into the future should be incorporated into flood hazard 
mapping as well.
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