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Introduction 11 

Standardized methods for flood risk evaluation in the United States were 12 

developed by the United States Geological Survey over more than a century 13 

(Klingeman, 2005; Wahl et al., 1995). They use an extensive network of river 14 

gauging stations and associated time series of annual flood peak discharge; many of 15 

these extend for 50-100 y. To meet regulatory and insurance requirements, flood 16 

risk assessments must be not only objective and scientifically defensible, but also 17 

uniformly applicable across highly variable hydrological regimes. The results are 18 

commonly subject to legal challenges as property owners contest the level of risk 19 

assigned; consistency of method is thus critical.  Through these standard methods, 20 

risk is modeled: a flood discharge of particular calculated recurrence interval is 21 
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routed through the channel and across the landscape via regulatory agency-22 

approved hydrodynamic models such as HEC-RAS (FEMA, 2002).  23 

 24 

Many developed nations outside the United States have similar risk evaluation 25 

methodologies. Quite commonly, a “100 y” discharge and associated floodplain are 26 

defined: this floodplain is the land area along a river where, at its margins, a 1% 27 

annual exceedance probability is calculated for inundation by floodwater (interior 28 

portions may experience much higher inundation frequencies). Thus, the 29 

probability Pe that one or more floods occurring during any period will exceed a 30 

given flood threshold can be expressed, using the binomial distribution, as 31 

Pe = 1 – [1 –(1/T)]n       (Equation 1) 32 

where T is the threshold return period (e.g. 100 y) and n is the number of years in 33 

the period. For floods, the event may be measured in peak m³/s or height; most 34 

commonly the calculation uses a time series of annual flood peak discharges (Flynn 35 

et al., 2006; Klingeman, 2005). 36 

 37 

In regard to this approach, many developing nations have a less developed 38 

hydrological measurement infrastructure, and relatively few reliable in situ records 39 

of past flood peak discharges. The need for reliable flood hazard information may be 40 

even more critical, however, as agricultural and manufacturing economies expand, 41 

and population growth and migration increase settlement of floodplain lands 42 

(Brakenridge et al., 2016b). In these locations, a different kind of hydrological 43 

modeling of flood hazard, generally on a relatively coarse spatial scale and without 44 
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abundant stream flow records, is one approach towards addressing the need (as 45 

discussed elsewhere in this book). Such approaches do not require in situ flood 46 

measurements, but instead reconstruct the flood history from climatological data 47 

input and topography-assisted modeling. 48 

 49 

The present chapter offers a third approach: combined analysis of:  50 

1) A 1998-present time series of satellite passive microwave data that records 51 

flood hydrographs at selected measurement sites (Brakenridge et al., 52 

2012a; De Groeve et al., 2015a; Van Dijk et al., 2016), and  53 

2) Optical sensor imaging and mapping of flood events, also sustained over a 54 

similar time span.  55 

These together produce an inundation record which is coupled to the 56 

microwave information:  in order to assign exceedance probabilities to the mapped 57 

inundation limits.  58 

 59 

Using this approach, standard flood probability distributions can be applied to 60 

a globally consistent observational period of record of nearly 20 y (1998-present). 61 

Note that a standard “rule of thumb” for extrapolation of flood probability 62 

distributions is 2x: if the period of annual peak flow record is 20 y, the “40 y” event 63 

can be estimated. Thus, these records should allow estimation at-a-site of this 64 

discharge, and some mapped floods, if they are the largest of record, will be assigned 65 

recurrence intervals in excess of 20 y. Even a reliable 25 y floodplain (annual 66 

exceedance probability = 4%) is very useful risk information in any region where 67 
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risk information is otherwise lacking, and these geospatial data can be made quickly 68 

available via the methodology and data described here. 69 

 70 

Orbital remote sensing in the late 20th and early 21st centuries has provided a 71 

rich archive of actual flood inundation extents. For such data, see for example 72 

(Brakenridge et al., 2016a). Some nations already use satellite-based maps of any 73 

extreme flood event for floodplain regulation, on the simple principle that what has 74 

occurred, may occur again (de Moel et al., 2009). Explored here is a globally 75 

applicable strategy, however, towards transforming such “mapped large flood” 76 

information into quantitative flood risk. Such maps can, in turn, also be used to 77 

validate and calibrate flood risk maps created using modeling approaches. 78 

Microwave Radiometry for Measuring River Discharge  79 

As noted, once a large flood has been mapped from space, the need is to 80 

constrain “how large/how rare” is the mapped event. In this regard, satellite 81 

microwave sensors provide global coverage of the Earth’s land surface on a daily 82 

basis and, at certain wavelengths, without major interference from cloud cover. 83 

Gridded data products, updated in near real time, are available (De Groeve et al., 84 

2015a).   The products are low in spatial resolution (best available resolution for 85 

these global coverage sensors is 8-10 km). However, using a strategy first developed 86 

for wide-area optical sensors (Brakenridge et al., 2005; Brakenridge et al., 2003b), 87 

sensors such as AMSR-E, AMSR-2, TRMM, and GPM (figure 1) can measure river 88 
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discharge changes at certain locations, by monitoring the surface water area signal 89 

from individual image pixels over time.   90 

 91 

The method is simple in concept: as rivers rise and discharge increases, water 92 

area within the single-pixel satellite gauging sites (~10 km x 10 km), as selected 93 

from a gridded global image product (figure 2), also increases (Brakenridge et al., 94 

2012a; Brakenridge et al., 2007; De Groeve et al., 2015b; De Groeve et al., 2006; De 95 

Groeve and Riva, 2009). This water area change tracks river width and discharge 96 

variation in a manner analogous to how stage (river level) tracks discharge at in situ 97 

gauging stations. The relationship of flow area to discharge is via the continuity 98 

equation  99 

Q=wdv         (Equation 2) 100 

 101 

where Q is water discharge in m3/s, w is flow width, d is water depth, and v is water 102 

flow velocity (m/sec), as integrated across the flow cross section.   As discharge 103 

increases, and provided the channel is not rectangular in shape, flow width 104 

increases at a cross section, and flow area increases overall within a river reach: in 105 

this case, a 10 km2 measurement site. 106 

 107 
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 108 

Figure 1. Temporal coverage, 1998 to present, of passive microwave sensors built 109 

and operated by NASA and by JAXA (the Japanese Space Agency). Each satellite 110 

provides daily or near-daily imaging of the globe. 111 

 112 

Note that a ~10 km 37 GHz image pixel in these gridded products, centered 113 

over a river, is commonly "mixed"; it includes both water (low emission) and land 114 

(high emission). As the proportion of water area rises, the net emitted radiation 115 

declines. The microwave signal is thus very sensitive to flow width changes. The 116 

physical mechanisms are explored elsewhere for this frequency radiation (e.g., 117 

reasons for low emission from water and much higher emission from land, 118 

Brakenridge, et al., 2007). However, the same methodology can also use the near IR 119 

bands of optical sensors:  again, water surfaces provide much lower radiance than 120 

adjoining land surfaces, but cloud cover will intermittently interfere (Brakenridge et 121 

al., 2005; Van Dijk et al., 2016). 122 

 123 
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 124 

 125 

 126 

Figure 2.  Location of Satellite Gauging Site DFO # 30 over Ayeyarwady River and its 127 

floodplain in Myanmar. The site is a single pixel selected from the JRC grid; pixel is 128 

10 km in size and produces the daily M value. The 95th percentile of the highest 129 

(driest and warmest) values from a 9 x 9 pixel array in the surrounding area 130 

produces the background calibration C value. 131 

 132 

As discharge along a river increases, the flow area, as seen from above, should 133 

generally increase monotonically (hysteresis effects can locally occur, however). 134 

Although in situ gauging stations instead commonly use stage, there is no a priori 135 

reason why this is a more sensitive flow monitor. If river channels are not 136 

rectangular in shape, discharge variation is expressed by both stage and width 137 

variations; and, along many rivers, width variation with flow is quite robust. Also, 138 

since a reach instead of a single cross section is monitored, the sensitivity of the flow 139 
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area measurement depends on the complete suite of river/floodplain morphologic 140 

features within the reach, and including in-channel bars and low floodplain surfaces, 141 

slip-off slopes along meander bends, braided channels and islands, and floodplain 142 

oxbow lakes which are connected to the main channel.  As for in situ stations, the 143 

best satellite gauging sites thus must be carefully selected; in this case, for reaches 144 

where surface area changes significantly over the full range of in-channel and flood 145 

discharges.  146 

 147 

One implementation of satellite microwave-based flow area information for 148 

operational hydrological measurements is the River Watch processor at the 149 

Dartmouth Flood Observatory (DFO), University of Colorado, 150 

http://floodobservatory.colorado.edu/. River Watch uses the NASA/Japanese Space 151 

Agency (JAXA) Advanced Scanning Microwave Radiometer (AMSR-E) band at 36.5 152 

GHz, the NASA/Japanese Space Agency TRMM 37 GHz channel, and 37 GHz data 153 

from the new AMSR-2 and GPM sensors. The discharge estimator (the remote 154 

sensing signal) is the ratio of the daily "M", microwave emissivity from a 155 

measurement pixel centered over the river and its floodplain, and a calibrating value 156 

("C"), the 95th percentile of the day's driest (brightest) emissivity within a 9 pixel x 157 

9 pixel array surrounding the measurement pixel. (figure 2).  The 95th percentile 158 

excludes outliers due to sensor noise while still providing a suitable non-hydrologic 159 

background measurement. At ~37 GHz, C/M is primarily sensitive to changing 160 

surface water area within the M pixel; using the ratio removes other emission 161 
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variability (e.g. from surface temperature) that affects all pixels in the area (De 162 

Groeve et al., 2015b; De Groeve et al., 2006; De Groeve and Riva, 2009). 163 

 164 

The time series at sites within reach of TRMM (<50 degrees latitude) begin in 165 

January 1998 (figure 1). Then AMSR-E data (merged with the TRMM information) is 166 

added when such becomes available in mid-2002. The series continues using TRMM, 167 

only, during the AMSR hiatus between AMSR-E termination and initiation of AMSR-168 

2; figure 1) and then it adds AMSR-2 and GPM (now merging the two data streams, 169 

into 2016). The microwave record at higher latitude sites begins in mid-2002 170 

(following launch of AMSR-E), and there is data gap in 2012-2013 between the 171 

termination of AMSR-E and initiation of AMSR-2. The gridding algorithm that 172 

produces the global daily images is performed at the European Commission’s Joint 173 

Research Centre (JRC); the original data are near real time swath information from 174 

each sensor provided by NASA and/or JAXA. A JRC technical document provides 175 

further information including data sources (De Groeve et al., 2015b). 176 

 177 

JRC produces a daily global grid at 10 km (near the equator) pixel resolution, 178 

and publishes daily ratio data for fixed pixels within that 4000 x 2000 pixel grid. At 179 

lower latitudes, the coverage is less than daily from AMSR-E and AMSR-2: the latest 180 

River Watch version uses a forward running, 4-day mean of the daily results to 181 

avoid such data gaps. Because river discharge exhibits strong temporal 182 

autocorrelation, such averaging also provides useful smoothing and noise reduction. 183 
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Also, when multiple samples for one pixel are available in one day, the latest sample 184 

value is used at JRC in the gridded product.  185 

 186 

At DFO, the latest ratio data from the JRC are ingested twice each day, and the 187 

web-hosted displays and calculated discharge data for each satellite gauging site are 188 

then updated. Each site display includes two (html) online web pages: one provides 189 

plots of the results but also some tabular data:  190 

(E.g., http://floodobservatory.colorado.edu/SiteDisplays/30.htm). 191 

The second presents the signal/discharge rating curve (see below) and access to the 192 

complete record of satellite-measured discharge: 193 

(http://floodobservatory.colorado.edu/SiteDisplays/30data.htm). 194 

For comparison purposes, a reference 20th percentile of the measured discharge for 195 

each day of the year is also provided and provides a useful low flow threshold. 196 

Production of Signal/Discharge Rating Curves 197 

As is the case for river stage measured at in situ gauging stations, independent 198 

information is needed to translate the discharge-sensitive observable (in this case, 199 

water surface area) to the corresponding discharge value. The transformation is 200 

accomplished by an empirical rating equation that matches the signal to 201 

independent discharge information. For River Watch, the calibrating discharge 202 

values are obtained by runs of a global runoff model (WBM) (Cohen et al., 2011). 203 

Five years (2003-2007) provide abundant daily model output for calibration; 204 

additional years comparing model and remote sensing could further refine and 205 
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possibly extend the resulting rating curves (if larger modeled flows occur than 206 

previously).  The WBM model, also using a global grid resolution of ~ 10 km, inputs 207 

climate and land surface variables and produces daily river discharge values for 208 

these years at each measurement site. Earlier work determined that adequate 209 

calibration information for each site’s rating curve can be obtained by comparing 210 

just the monthly daily maximum, minimum, and mean values, so n=180 for the 5 y 211 

run (Brakenridge et al., 2012a; Cohen et al., in preparation, 2013; Cohen et al., 212 

2011). Figure 3 provides sample results at one site as a scatter plot; figure 4 213 

illustrates the same data in time series form. In the latter case, the signal data are 214 

first translated to discharge values using the scatter plot’s rating curve in order to 215 

show the two time series on the same scale.   216 

 217 

 218 

Figure 3. Scatter plot comparing WBM-modeled daily discharge over a 5 y (January-219 

December monthly daily maximum, minimum, and mean discharges) to the C/M 220 

ratio for River Watch site 30.  The relationship is empirical and a better curve could 221 

be fit to these data, but a straight line is a useful first-approximation rating curve. 222 
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 224 

Figure 4. Same data as in figure 3, but arranged as time series of maximum (left) 225 

mean (middle), and minimum (right) discharge values. The red line shows the 226 

model results and the blue line is the remote sensing as transformed by the rating 227 

equation in figure 3. 228 

 229 

Without other information, it is not possible to determine which departures in 230 

a smooth monotonic relation in figure 3 is from errors in the remote sensing signal 231 

and which from errors in the model. For the purpose of the flood risk assessments 232 

to be described here, however, the correlation of independent model to remote 233 

sensing further establishes that the microwave water area signal is indeed 234 

responding to discharge variation. Also, and whether or not WBM is strongly 235 

affected by model bias and is reporting consistently too-high or too-low discharge 236 

numbers, such bias will not affect the risk probabilities. Figure 5 provides the entire 237 

remote sensing daily time series at this satellite gauging site, and using the rating 238 

curve in figure 3. Because the ratio signal is responding to surface water (and 239 

flooding) extent within the M pixel, the relative heights of the flood hydrographs 240 

shown should accurately reflect the true time series of flooding there: regardless of 241 

any model bias in the discharge calibration. This result then provides the essential 242 
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information needed for flood hazard mapping: a method to constrain the observed 243 

frequency/exceedance probability of an imaged flood.  244 

 245 

Figure 4. Daily (4-day forward running mean) discharge values for satellite gauging 246 

site 30 on the Ayeyarwady River. The low flow threshold (green line) is the 20% 247 

percentile discharge for each day; the flood thresholds use recurrence intervals 248 

computed using the Log Pearson III distribution and the annual maximum daily 249 

values. Major flooding in 2015 approached the calculated 5 y recurrence interval; 250 

the flood of record, in 2004, was produced by a very damaging tropical storm 251 

(Brakenridge et al., 2016b); flooding here exceeded the 25 y threshold.  252 

 253 

There is an important factor that may change the exact return periods to be 254 

assigned to the annual flood peaks shown in figure 4. That is, the straight line rating 255 

equation shown in figure 3 clearly produces somewhat too high discharges for the 256 

highest water area signal values (figure 3). Adjusting the rating equation to flatten 257 

the slope would produce somewhat smaller flood peaks and also alter the 258 

corresponding return periods for the larger events. This dependency indicates the 259 

importance of developing the highest quality rating curves (the same need exists for 260 

in situ gauging stations). 261 
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Assessing River Watch Accuracy 262 

As noted, the accuracy of the satellite gauging site results depends in part on 263 

river and floodplain morphology. Other site-specific factors such as vegetation are 264 

also important (Revilla-Romero et al., 2014). Using both the model and the remote 265 

sensing results, without any ground-based information, it is also possible to 266 

calculate useful statistics comparing the overall accuracy of the discharge time 267 

series results. For example, flow areas may not change very much in response to 268 

discharge along some reaches, in which case the expected signal range is small 269 

compared to the daily noise that can be induced by other factors (see below). Two 270 

descriptive statistics for a sample of sites in Myanmar along the Ayeyarwady and a 271 

major tributary (the Chindwin River) are provided as Table 1 to illustrate their 272 

utility and application.  The signal/model agreement is a simple ranking and 273 

classification of the signal/model least squares regression (coefficient of 274 

determination r2) results, as in figure 3 (either for straight line fits or second order 275 

polynomials that can better match the data).  Among different sites, higher r2 276 

indicates a stronger correlation; it is more likely that the remote sensing signal is 277 

accurately tracking river discharge variation if it is strongly correlated to modeled 278 

discharge output. These thresholds were chosen to group the r2 values into classes:  279 

>.7, Excellent, .6-.69, Very Good,  5-.59, Good, .4-.49, Fair, <. 4, Poor.  280 

 281 

Second, the sites vary in maximum signal range over the period of record (in 282 

the table, from a low of .08 to .20, or more than 2-fold). They also vary in the average 283 

daily signal change (from a low of .08 to .14, or nearly 2-fold).  Thus, some sites may 284 
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exhibit a very small total range, but significant daily variation, much of which may 285 

be noise; others a large total range and relatively small daily variation (stronger 286 

signal/noise). The ratio provides a consistent “signal strength” measure that can be 287 

similarly classified from excellent to poor. The following thresholds were chosen to 288 

group the signal/noise values into classes:  >.8, Excellent, .7-.79, Very Good, .6-.69, 289 

Good, .47-.59, Fair, <. 47, Poor.   290 

 291 

The two metrics separately provide an objective assessment of how well the 292 

remote sensing agrees with the modeling, and how strongly the signal is recording 293 

discharge variation compared to the day-to-day variation that may be mainly noise 294 

along many rivers. Known sources for noise may include: 1) geolocation error (the 295 

geographic footprint of the swath image data incorporated into the gridded global 296 

product varies slightly); 2) sensor noise (the radiance measurements have finite 297 

precision); and 3) non-surface water area effects on the ratio (so any differential 298 

environmental factors affecting the M pixel over the river and the driest pixels in the 299 

C calibration array. 300 

 301 

Site Signal/Model  Signal Range Discharge Range Signal/Noise  r2 302 

 Agreement and daily  303 

 304 

108 Very Good .11, .008 21,091 m3/s  Good  .66 305 

23 Good  .08, .009 25,507 m3/s  Fair  .57 306 

26 Very Good .09, .013 17,242 m3/s  Fair  .67  307 

29 Good  .12, .014 35,891 m3/s  Fair  .57 308 
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30 Very Good .20, .013 35,245 m3/s  Very Good .70 309 

Table 1. Summary of microwave discharge measurement (River Watch) site characteristics 310 

and accuracy for sites along the Chindwin (108 and 23) and Ayeyarwady (26, 29, 30). The 311 

signal range statistic records the total measured variability of the discharge-estimator 312 

signal; larger values indicate a site where the remote sensing signal is more sensitive to 313 

discharge variation. The noise statistic refers to the average signal variability on a daily 314 

basis; larger values indicate more non-hydrologic noise. The r2 values are coefficients of 315 

least squares regression of the independent WBM modeling discharge results to the remote 316 

sensing signal (over 5 years, 2000-2010, monthly daily maximum, mean, and minimum 317 

values, n=180). 318 

 319 

Where ground gauging stations and satellite gauging sites are co-located, the 320 

remote sensing can also be directly calibrated to discharge directly via the ground 321 

information. Selected U.S. sites (e.g., figure 5) therefore compare model-based and 322 

ground station-based rating curves: providing both an assessment of model bias and 323 

of the overall accuracy of the River Watch information.  In the example shown, the 324 

river channel is meandering, but only 45 m wide; thus also demonstrating that the 325 

River Watch method is not limited to large rivers but instead requires only 326 

floodplain/channel reaches where total surface water extent changes robustly as 327 

discharge changes. 328 

 329 
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 330 

Figure 5.  Model- and ground station-based rating curves for Trinity River, 331 

Texas, River Watch site 446 in the Dartmouth Flood Observatory/University of 332 

Colorado array. The WBM model was used to produce the black line rating curve, 333 

which is fit to widely scattered data. A co-located USGS gauging station was used to 334 

produce the red line rating curve, with much better correlation to the remote 335 

sensing. Comparison of the two curves indicates a WBM model positive discharge 336 

bias increasing with higher discharges. Also, at this location, the WBM model may 337 

perform relatively poorly because it does not incorporate upstream river control 338 

structures. 339 

Satellite Gauging Site Selection 340 

There are several factors affecting the selection of gauging locations. It is 341 

important that the M pixel be located to avoid saturation (complete filling of the 10 342 

km measurement pixel by water) during flood events. It is also necessary that the 343 

pixel monitors a relatively uniform stretch of river without major tributary 344 

junctions, or nearby streams, or other variable water bodies that may change in 345 
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surface area without directly indicating discharge changes at the site intended. The 346 

measurement site can, however,  include,  such river-connected features as oxbow 347 

lakes and other water-filled negative relief floodplain features (Lewin and 348 

Ashworth, 2014) that are connected to the river: their expansion or contraction is 349 

responsive to local river discharge changes.  350 

 351 

Note that there may be significant time lags and hysteresis between the filling 352 

and draining of floodplains and the discharges traversing the trunk stream channel 353 

(Brakenridge et al., 2007).  Consider in this regard that the microwave method is not 354 

using reach water surface area as a simple proxy for river flow width. Instead, a 10 355 

km x 10 km parcel of floodplain and channel land with interconnected water 356 

features is recording discharge variation. The sites must be visually inspected in 357 

map form to ensure that, in each case, the flow area changes relate to the river being 358 

monitored and to evaluate the potential influence of time lags and also flow control 359 

structures along the river. Another important confounding factor is irrigated 360 

agriculture, especially rice paddies. Such farming, in either the M or the C pixel, can 361 

produce an entirely erroneous change in the signal ratio as regards discharge; 362 

instead the signal records irrigation changes. 363 

 364 

Despite the requirement for careful evaluation of each potential river 365 

measurement site, there are at least several thousands of additional River Watch 366 

sites that could be established and beyond the ~300 now being published online 367 

(http://floodobservatory.colorado.edu/DischargeAccess.html).  The microwave 368 
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ratio signal information is already available for each cell of the global grid. As well, it 369 

is possible to use observed site numerical correlations to known discharge variation 370 

en masse:  to select, via the degree of correlation, the best sites to examine further 371 

(Van Dijk et al., 2016). Through this satellite observational method, in situ gauging 372 

stations are not required to consistently evaluate flood risk along satellite-373 

monitored river reaches and floodplains: at least for predicted recurrence intervals 374 

ranging up to approximately 40 y. 375 

Flood Mapping From Optical Satellites 376 

One useful method for mapping floods and flood hazard uses the two NASA 377 

MODIS sensors (aboard the satellites Terra and Aqua).  These provide 36 optical 378 

spectral bands; most bands offer spatial resolution of 1000 or 500 m. However, two 379 

bands, in the visible and near-IR portions of the spectrum (620 – 670 nm, band 1, 380 

and 841 – 876 nm, band 2) provide spatial resolution of 250 m; band 2 in particular 381 

strongly differentiates surface water from land. Such information has been used to 382 

map the inundation extents reached by floods at many locations worldwide 383 

(Brakenridge et al., 2003a; Brakenridge et al., 2012b; Policelli, 2016), figure 6.  All of 384 

the (twice daily, global coverage) image data since late 1999 are available in various 385 

formats in public NASA and other data archives. 386 

 387 

As floods evolve, daily mapping of the inundation extents provide a near real 388 

time indication of flood severity. Flooding can be compared to previously mapped 389 

water, such as winter low flow conditions and typical annual high water (figure 6). 390 
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Thus, accurate “flood” mapping does not only involve mapping maximum flood 391 

extent reached by an event, but also comparison to water extent that is typical for 392 

the same time of year. Figure 6 illustrates the large amount of normal annual water 393 

variability in a summer monsoon-affected region, which must first be masked before 394 

unusual flooding can be discerned.  Mapping over some years can thereby provide 395 

both increasingly comprehensive flood hazard information (more probability of 396 

imaging and mapping the unusual high floods) and better information concerning 397 

what are typical and atypical high water conditions. 398 

 399 
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 400 

Figure 6. MODIS remote sensing-produced map of major 2015 flooding in Myanmar 401 

(light red), and also the typical annual high water (2014, light blue). Recurrence 402 

intervals at the River Watch measurement sites for the 2014  “flood” are 403 

approximately 1.5 y. Dark blue is a permanent water mapped by the Shuttle Water 404 

Boundary Data (https://lta.cr.usgs.gov/srtm_water_body_dataset) from February, 405 

2000, and represents typical winter surface water extent. 406 

 407 
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Remote Sensing-based Flood Hazard Quantification 408 

Flood inundation mapping can be coupled with either ground- or space-based 409 

river gauging to constrain the frequency of the mapped flood. Thus, using river 410 

discharge time series, standard flood frequency methods (Flynn et al., 2006) can 411 

analyze the series of annual peak discharges within the period of record to evaluate 412 

flood recurrence intervals/annual exceedance probabilities for any particular event. 413 

In the U.S., the Log Pearson III probability distribution is used.  There are other 414 

potential issues involved in creating a risk assessment at a gauging station, 415 

particularly for large, rare events, and including the possibility to apply skewness 416 

coefficients using regional data and within the standardized Log Pearson III or other 417 

distribution functions.  These techniques are well described in the literature, and 418 

provide various methods for extending and/or extrapolating the data provided by 419 

any single river peak discharge time series.  420 

 421 

In any case, however, the need for spatial extrapolation over a flood-prone 422 

landscape remains. A single image of a large flood event shows the inundation 423 

extent over long reaches of floodplain, and the local exceedance probability may 424 

vary significantly with location. The probability estimates obtained from a time 425 

series at a discharge time series measurement site strictly apply only to flooding at 426 

that site. This poses an interesting contrast to model-based risk mapping (other 427 

chapters in this book): such models predict inundation from a specific recurrence 428 

interval and discharge value in a spatially continuous manner, and using 429 

information about channel and floodplain morphology and flow routing equations. A 430 
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flood image instead directly provides the inundation extent, without knowledge 431 

everywhere of the recurrence interval.  432 

 433 

In flood modeling, the spatial continuity issue is implicitly addressed by 434 

interpolation. For example, the 20 y flood at site A may be calculated at 12,000 m3/s 435 

and that at downstream site B, 16,000 m3/s. At a river location mid-way between 436 

the two stations, and if there are no major tributary junctions, a 20 y discharge of 437 

14,000 m3/s may be modeled for inundation prediction there (in grid-based 438 

modeling, this interpolation is at the grid resolution). Borrowing from this 439 

approach, if the satellite image maps a flood at both station locations, with a 440 

calculated r of 12 y at A but 18 y at B, 100 km downstream, the imaged flood limits 441 

may have, in this case, a range of r somewhere within 12 to 18 y. The risk values and 442 

map information then becomes even more complex, as additional floods of different 443 

return periods are mapped.  Such complexity would not address the need to identify 444 

in a consistent way floodplain land areas at a particular risk of flooding. 445 

 446 

A more practical approach is to instead divide the flooded drainage network 447 

into a series of segmented river reaches: each monitored near their midpoints by 448 

either a ground-based or space-based discharge measurement site (figures 7and 8).  449 

Under this approach, the associated r is assumed to apply to the inundation extent 450 

throughout the reach, and larger or smaller floods imaged and mapped for the same 451 

reach will each also have specific recurrence intervals. In this case, no attempt is 452 

made to interpolate between river discharge measurement sites, but instead risk  453 
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  454 

 455 

 456 

 457 

 458 
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Figure 7. Recurrence interval and peak discharge estimates for River Watch site 30 459 

along the lower Ayeyarwady River. The microwave measurement site is defined by 460 

the white 10 km square. Inundation for, top, a normal winter flow of 6253 m3/s on 461 

February 11-22, 2000; middle, observed via MODIS at 250 m spatial resolution, 462 

flooded area for a typical summer monsoonal “flood”, r = 1.5 y (27,138 m3/s, 463 

observed 2013), and bottom, observed via MODIS again, flooded area for major 464 

flooding in 2004, r = 24 y (50,579 m3/s. Note that during this flood a major 465 

distributary to the east (the area is at the head of the Ayeyarwady delta) is also 466 

flooded. 467 

 468 

maps are prepared separately, for each monitored river reach.  A combined 469 

mapping and modeling approach, wherein the modeling provides the continuity and 470 

ability to map a particular recurrence interval flood, and the remote sensing-based 471 

mapping provides the observational validation, reach by reach, appears to be the 472 

most productive way forward for large-region mapping of flood risk. (De Groeve et 473 

al., 2015a) 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 
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 482 

 483 

 484 

 485 

Figure 8. Recurrence interval and peak discharge estimates for River Watch site 26 486 

along the upper Ayeyarwady River. Inundation for, top, a normal winter flow of 487 
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~200 m3/s in February, 2000; middle, a typical monsoon season flood, recurrence 488 

interval of 1.1 y, ~9000 m3/s, in 2002, and, bottom, inundation during a rare flood, 489 

recurrence interval of 21 y, 18,200 m3/s, in 2013. 490 

Conclusion 491 

The outlined approach couples microwave and optical remote sensing to 492 

produce quantitative flood risk maps. This chapter describes how the two can be 493 

integrated:  the increasingly comprehensive global satellite map record of flood 494 

events can be matched to exceedance probabilities from microwave discharge 495 

records to produce risk maps without any in situ information. For the two examples 496 

provided, the period of satellite-microwave-observed flood discharges begins in 497 

1998 and is now approaching 20 y. By adding the associated microwave record, the 498 

reach-level flood maps prepared from MODIS optical remote sensing show not only 499 

actual mapped floods, but also the associated annual exceedance probabilities. As is 500 

the case for flood modeling products, these maps are a quantitative guide to future 501 

risk. 502 

 503 

There is also an important additional use of such maps:  for near real time 504 

flood inundation prediction. Unless channels and floodplains have changed since 505 

previously mapped floods (e.g., through levee construction or removal), similar 506 

flood discharges in the future along the monitored reaches should continue to 507 

produce similar inundation extents. This presents an observational rather than 508 

modeling path forward for flood inundation prediction. That is, if a particular flood 509 
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hydrograph was measured, either via an in situ gauging station or the satellite 510 

microwave approach, and the resulting floodplain inundation was also observed and 511 

mapped, then the map can be used to understand what land areas will be 512 

submerged when that discharge is once again attained. A library of inundation maps 513 

can be assembled, and referred to when flooding again occurs. Note however, that 514 

flood hydrograph volume, as well as simply peak discharge and stage, may also 515 

affect maximum inundation extent, and especially over large floodplains. Flooded 516 

area is a relatively new hydrological observable that is made possible via orbital 517 

remote sensing. Productive research can now be accomplished relating different 518 

aspects of flood hydrographs to the societally and ecologically relevant variables of 519 

inundation extent and duration. 520 

 521 

This satellite-based flood risk method is presented in outline form here, but 522 

there are complexities involved in its practical implementation and validation. For 523 

example, shortening the reach lengths and obtaining data from a denser array of 524 

discharge measurement sites would increase the accuracy and detail of risk 525 

mapping:  by testing and comparing individual measurement site results. As in many 526 

other areas of work, replication of the hazard results obtained are important for the 527 

results to be trusted. Also, consider that there may be relatively large step changes 528 

between contiguous reaches in the calculated return periods for a particular 529 

mapped flood, for example, due to the influence of tributary discharges: this could 530 

pose a challenge in the preparation of regional maps, but also reflects the reality of 531 

the actual flood history and future risk.  If regional maps are needed, another useful 532 
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strategy may be to couple the described, reach-specific observational approach with 533 

regional and even global flood hazard modeling methods such as are described in 534 

other chapters in this book. For this, continuous spatial coverage via remote sensing 535 

is not needed (it is provided by the modeling). Instead, the discrete reaches where 536 

risk is characterized by remote sensing can provide critical model validation. 537 

 538 

Finally, there is evident utility in focused attempts to image and map the very 539 

largest flood events in the period of record (e.g., the 2004 flooding in figure 4 and 6). 540 

Such work provides an unambiguous mapped hazard area from the most infrequent 541 

and often exceptionally damaging large events, and now their expected frequency 542 

can also be approximately constrained.  Indeed, these satellite images and 543 

associated maps need to be preserved as “memorials” for posterity and in the same 544 

way that many communities across the globe preserve high water marks from 545 

historic extreme floods (Davies, 2014). Given a changing climate, and also changes 546 

in watershed land cover and other characteristics, there is a lack of support for 547 

assuming temporal stationarity in the series of annual peak discharge (Milly et al., 548 

2008). Yet it is only by using this assumption that probability distribution-based 549 

exceedance probabilities can be calculated. This cautions against mapping flood 550 

hazard as a static quantity. Instead, quantitative flood risk maps can be used as a 551 

starting point, and predictive models that provide information for how flood regime 552 

may change into the future should be incorporated into flood hazard mapping as 553 

well. 554 

Page 29 of 33 AGU Books



For Review
 O

nly

 30

References  555 

Brakenridge, G.R., Anderson, E., Nghiem, S.V., Caquard, S. and Shabaneh, T., 2003a. 556 

Flood warnings, flood disaster assessments, and flood hazard reduction: the 557 

roles of orbital remote sensing., Proceedings of the 30th International 558 

Symposium on Remote Sensing of the Environment, Honolulu, pp. 4. 559 

Brakenridge, G.R., Anderson, E., Nghiem, S.V. and Chien, S., 2005. Space-based 560 

measurement of river runoff. EOS, Transactions of the American Geophysical 561 

Union, 86. 562 

Brakenridge, G.R., Carlos, H., Anderson, E. and International Society for Optical 563 

Engineering (SPIE), C., Greece, and Proceedings of SPIE, Vol. 4886, p. 479-564 

485.. 2003b. Satellite gaging reaches: a strategy for MODIS-based river 565 

monitoring. 9th International Symposium on Remote Sensing9th 566 

International Symposium on Remote Sensing. 567 

Brakenridge, G.R., Cohen, S., Kettner, A.J., De Groeve, T., Nghiem, S.V., Syvitski, J.P.M. 568 

and Fekete, B.M., 2012a. Calibration of orbital microwave measurements of 569 

river discharge using a global hydrology model. Journal of Hydrology, 570 

http://dx.doi.org/10.1016/j.jhydrol.2012.09.035. 571 

Brakenridge, G.R., Kettner, A.J., Slayback, D. and Policelli, F., 2016a. Global Atlas of 572 

Floodplains, Sheet 090E030N. Dartmouth Flood Observatory, University of 573 

Colorado, Boulder, CO. 574 

Brakenridge, G.R., Nghiem, S.V., Anderson, E. and Mic, R., 2007. Orbital microwave 575 

measurement of river discharge and ice status. Water Resources Research, 576 

43(W04405, doi:10.1029/2006WR005238). 577 

Page 30 of 33AGU Books



For Review
 O

nly

 31

Brakenridge, G.R., Syvitski, J.P.M., Nieburh, E., Overeem, I., Higgins, S.A., Kettner, A.J. 578 

and Pradesh, L., 2016b. Design with Nature: Causation and Avoidance of 579 

Catastrophic Flooding, Myanmar. Earth-Science Reviews, In review. 580 

Brakenridge, G.R., Syvitski, J.P.M., Overeem, I., Stewart-Moore, J.A. and Kettner, A.J., 581 

2012b. Global mapping of storm surges, 2002-present and the assessment of 582 

coastal vulnerability. Natural Hazards, DOI 10.1007/s11069-012-0317-z. 583 

Cohen, S., Kettner, A.J. and Syvitski, J.P.M., 2011. WBMsed: a distributed global-scale 584 

riverine sediment flux model - model description and validation. . Computers 585 

and Geosciences, doi: 10.1016/j.cageo.2011.08.011 (2011). 586 

Davies, T., 2014. Flood and High Water Marks. Flood List. 587 

De Groeve, T., Brakenridge, G.R. and Paris, S., 2015a. Global Flood Detection System 588 

Data Product Specifications. JRC Technical Report. , 589 

http://www.gdacs.org/flooddetection/Download/Technical_Note_GFDS_Dat590 

a_Products_v1.pdf. Publications Office of the European Union. 591 

De Groeve, T., Kugler, Z. and Brakenridge, G.R., 2006. Near Real Time Flood Alerting 592 

for the Global Disaster Alert and Coordination System. Proceedings 593 

ISCRAM2007 (B. Van de Walle, P. Burghardt and C.Nieuwenhuis, eds.): 33-39. 594 

De Groeve, T. and Riva, P., 2009. Early flood detection and mapping for 595 

humanitarian response. Proceedings of the 6th International ISCRAM 596 

Conference – Gothenburg, Sweden, May 2009, J. Landgren and S. Jul, eds. 597 

de Moel, van Alphen, J. and Aerts, J.C.J.H., 2009. Flood maps in Europe-methods, 598 

availability, and use. Nat.Hazards. Earth Syst. Sci, 9: 289-301. 599 

Page 31 of 33 AGU Books



For Review
 O

nly

 32

FEMA, 2002. HEC-RAS procedures for HEC-2 modelers. Floodplain Modeling 600 

Manual. Federal Emergency Management Agency, Washington, DC, 78 pp. 601 

Flynn, K.M., Kirby, W.H. and Hummel, P.R., 2006. User’s Manual for Program PeakFQ, 602 

Annual Flood-Frequency Analysis Using Bulletin 17B Guidelines. U.S. 603 

Geological Survey, Reston, Virginia: 42. 604 

Klingeman, P., 2005. Analysis Techniques: Flood Frequency Analysis. Streamflow 605 

evaluations for watershed restoration planning and design. Oregon State 606 

University, Corvalis, Oregon, USA. 607 

Lewin, J. and Ashworth, P.J., 2014. The negative relief of large river floodplains. 608 

Earth Science Reviews, 129: 1-23. 609 

Milly, P.C.D., Betancourt, J., Malin, F., Hirsch, R.M., Kundzewicz, Z.W., Lettenmaier, 610 

D.P. and Stouffer, R.J., 2008. Stationarity Is Dead: Whither Water 611 

Management? Science, 319: 573-574. 612 

Policelli, F., 2016. The NASA global flood mapping system,. In: V. Lakshmi (Editor), 613 

Remote Sensing of Hydrologic Extremes. Springer-Verlag. 614 

Revilla-Romero, B., Thielen, J., Salamon, P., De Groeve, T. and Brakenridge, G.R., 615 

2014. Evaluation of the satellite-based Global Flood Detection System for 616 

measuring river discharge: influence of local factors. . Hydrol. Earth Syst. Sci., 617 

18: 4467-4484. 618 

Van Dijk, A.I.J.M., Brakenridge, G.R., Kettner, A.J., Beck, J.E. and De Groeve, T., 2016. 619 

River gauging at global scale using optical and passive microwave remote 620 

sensing. Water Resources Research, 52: 6404-6418. 621 

Page 32 of 33AGU Books



For Review
 O

nly

 33

Wahl, K.L., Thomas, W.O. and Hirsch, R.M.U., Reston VA, 1995. Stream-gaging 622 

program of the U.S. Geological Survey, USGS Circular 1123. U.S. Geological 623 

Survey. 624 

 625 

Page 33 of 33 AGU Books


